Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers engineer virus that blocks common genetic defect

19.09.2002


Scientists for the first time have engineered a harmless virus to correct, rather than replace, the genetic defect causing the most common single gene disorder.



The new research presents a novel approach to gene therapy in treating the most common inherited anemias: the thalassemias. Thalassemias are genetic blood diseases that result in failure to produce sufficient hemoglobin, the oxygen-carrying protein component of blood cells. This failure is caused by defects in the genetic code responsible for the production of this protein.

Scientists have explored gene therapy for these disorders for more than 20 years; only recently has this area seen a glimmer of hope. The report from the University of North Carolina at Chapel Hill is slated to appear in the Dec. 15 issue of Blood, the journal of the American Society of Hematology, and is currently online at www.bloodjournal.org.


"This research offers a new way to treat the thalassemias, by blocking a deleterious process that causes several forms of the disease," said senior study author Dr. Ryszard Kole, professor of pharmacology, and a member of UNC Lineberger Comprehensive Cancer Center and the curriculum in genetics and molecular biology at the UNC School of Medicine.

The thalassemias are caused by a variety of different mutations in the globin gene, many of which adversely affect a process known as RNA splicing.

Three billion bases - molecules that constitute DNA - form the human genome. Only a small percentage actually code for the gene products necessary for existence. These small coding regions are like words that make sense in a long continuous string of gibberish, which must be spliced out to create a meaningful message that can then be read to make the corresponding protein. Short sequences at the border between the sense and nonsense regions, called splice sites, tell the splicing machinery where to cut, where to paste and what information can be disregarded.

Some mutations can affect splicing by creating additional splice sites in places where they should not occur. Even though the correct splice sites are still intact, the splicing machinery preferentially recognizes the incorrect splice sites, resulting in the inclusion of extra, noncoding sequences, which interfere with subsequent production of hemoglobin. Kole and colleagues found that using molecules designed to bind specific regions of RNA to block aberrant splice sites could prevent splicing machinery from using those sites.

With the aberrant sites blocked, the splicing machinery goes back to the original, correct splice sites and uses these to cut and paste the correct globin message.

"In our approach the defect in the RNA is ’masked,’ thereby effectively ’repaired.’ This is different from replacing the gene with a good copy, which will then produce additional RNA and hemoglobin," Kole said. "Since we only repair the existing RNA, we do not need to worry that too much of the good thing will be made. This can sometimes be harmful."

In collaboration with Dr. Tal Kafri, co-senior author of the study, assistant professor of microbiology and immunology and a member of the Gene Therapy Center, the antisense sequences were incorporated into a lentiviral vector.

"Lentiviral vectors appear to be the most attractive vehicles to carry therapeutic genes into non-dividing target cells such as the hematopoietic stem cells," Kafri said. "Gene delivery into these cells allows us to reconstitute a patient’s bone marrow with vector-corrected stem cells that confer a lifelong remedy. The use of antisense technology coupled with these lentiviral vectors allows us to propel this field forward in the treatment of hematopoietic disorders."

In the UNC study, the genetically modified lentiviral vector was used to treat blood cells obtained from a thalassemic patient. The treatment partially restored correct splicing in the cells and resulted in a marked increase in correct hemoglobin protein. "The results are very encouraging because even hemoglobin levels that reach less than 50 percent of normal can have a therapeutically relevant effect," said Kole.

The antisense technology explored in this study is not limited to thalassemia. The finding that the human genome comprises far fewer genes than previously thought suggests that the complexity of human beings must arise from mechanisms of gene regulation, such as splicing. According to current estimates, at least 60 percent of the human genes may be alternatively spliced.

"We have been successful in the laboratory in shifting the aberrant splicing of a few other genes involved in genetic disorders and cancer," said Kole. "With the discovery that thousands of genes are spliced, as far as potential targets for this new form of gene therapy are concerned, the sky’s the limit."

Along with Kole and Kafri, UNC co-authors include Marla M. Vacek, first author of the study and a doctoral student in the curriculum in genetics and molecular biology, and Hong Ma, a researcher in the Gene Therapy Center.

Leslie Lang | EurekAlert!
Further information:
http://www.bloodjournal.org/papbyrecent.shtml.

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>