Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New class of composite organic material could put the muscle in artificial body parts

19.09.2002


A new class of all organic composites that change shape under an electric voltage may open the door for the manufacture of artificial muscles, smart skins, capacitors, and tiny drug pumps, according to Penn State researchers.



"Electroactive polymers have been around for a long time, but the energy input required for them to do enough work to be of value was very high," says Dr. Qiming Zhang, professor of electrical engineering. "With this new composite we have reduced the voltage to one tenth that previously needed."

The researchers report in today’s ( Sept. 19 ) issue of the journal, Nature that a new class of composites, fabricated from an organic filler possessing very high dielectric constant dispersed in an electrostrictive polymer matrix, has much improved properties for the manufacture of actuators.


"These all-organic actuators could find applications as artificial muscles, smart skins for drag reduction, toys and in microfluidic systems for drug delivery," says Zhang. "In addition, the high dielectric constant makes this material attractive for high performance capacitors."

The dielectric constant is a relative measure of a materials ability to store electric charge. The dielectric constant is related to the chemical structure of the material and the higher the dielectric constant, the better the material will store an electric charge. Unlike traditional piezoelectric materials, which have a one-to-one relationship between voltage and movement, most electroactive polymers which are capable of creating large shape changes under electric fields have a square relationship between voltage and movement. In some cases, a 10 percent range of movement is attainable.

The researchers looked at the electrostrictive poly(vinylidene fluoride-trifluoroethylene), a known electroactive copolymer which was developed recently at Zhang’s Penn State laboratory, for the matrix in the composite. For filler, they used an organic semiconductor, copper-phthalocyanine, because it has a high dielectric constant.

"The copper-phthalocyanine disperses in the polymer matrix," says Zhang. "The dispersion is one aspect that we need to work on more and we are looking at a variety of approaches including creating nanocomposites."

The composite has electrical properties more suitable to low voltage operation. The composites are also nearly as flexible as the copolymer alone which has the appearance of a slightly more rigid plastic bag.

"Potential applications for this material include a variety of tiny pumps because the material can me made to pump periodically or in a wave fashion," says Feng Xia, graduate student in electrical engineering and part of the team working on a variety of approaches to electrostrictive materials in Penn State’s Materials Research Institute. "Small insulin or other pharmaceutical pumps could be powered by a low voltage battery and an electroactive composite. Other applications include pumping fluids through the channels in a diagnostic chip array or as smart skins that would reduce drag."

For artificial muscles and tendons, the flexible, elastic nature of the material may provide a more natural motion for mechanical musculature. Multiple, very thin layers stacked and then rolled and flattened could simulate muscles.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>