Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New class of composite organic material could put the muscle in artificial body parts

19.09.2002


A new class of all organic composites that change shape under an electric voltage may open the door for the manufacture of artificial muscles, smart skins, capacitors, and tiny drug pumps, according to Penn State researchers.



"Electroactive polymers have been around for a long time, but the energy input required for them to do enough work to be of value was very high," says Dr. Qiming Zhang, professor of electrical engineering. "With this new composite we have reduced the voltage to one tenth that previously needed."

The researchers report in today’s ( Sept. 19 ) issue of the journal, Nature that a new class of composites, fabricated from an organic filler possessing very high dielectric constant dispersed in an electrostrictive polymer matrix, has much improved properties for the manufacture of actuators.


"These all-organic actuators could find applications as artificial muscles, smart skins for drag reduction, toys and in microfluidic systems for drug delivery," says Zhang. "In addition, the high dielectric constant makes this material attractive for high performance capacitors."

The dielectric constant is a relative measure of a materials ability to store electric charge. The dielectric constant is related to the chemical structure of the material and the higher the dielectric constant, the better the material will store an electric charge. Unlike traditional piezoelectric materials, which have a one-to-one relationship between voltage and movement, most electroactive polymers which are capable of creating large shape changes under electric fields have a square relationship between voltage and movement. In some cases, a 10 percent range of movement is attainable.

The researchers looked at the electrostrictive poly(vinylidene fluoride-trifluoroethylene), a known electroactive copolymer which was developed recently at Zhang’s Penn State laboratory, for the matrix in the composite. For filler, they used an organic semiconductor, copper-phthalocyanine, because it has a high dielectric constant.

"The copper-phthalocyanine disperses in the polymer matrix," says Zhang. "The dispersion is one aspect that we need to work on more and we are looking at a variety of approaches including creating nanocomposites."

The composite has electrical properties more suitable to low voltage operation. The composites are also nearly as flexible as the copolymer alone which has the appearance of a slightly more rigid plastic bag.

"Potential applications for this material include a variety of tiny pumps because the material can me made to pump periodically or in a wave fashion," says Feng Xia, graduate student in electrical engineering and part of the team working on a variety of approaches to electrostrictive materials in Penn State’s Materials Research Institute. "Small insulin or other pharmaceutical pumps could be powered by a low voltage battery and an electroactive composite. Other applications include pumping fluids through the channels in a diagnostic chip array or as smart skins that would reduce drag."

For artificial muscles and tendons, the flexible, elastic nature of the material may provide a more natural motion for mechanical musculature. Multiple, very thin layers stacked and then rolled and flattened could simulate muscles.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>