Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy promising for preventing restenosis

17.09.2002


An experimental gene transfer technique shut down cell re-growth in the arteries’ interior lining and reduced the inflammatory response – two main causes of re-narrowing of newly opened blood vessels, researchers report in today’s rapid access issue of Circulation: Journal of the American Heart Association.



The process that opens blocked blood vessels – either inflating a tiny balloon to force open the narrowed vessel (angioplasty) or inserting a tiny mesh tube called a stent to serve as a scaffold to widen the opening – can damage the delicate lining of blood vessels, says Seppo Yla-Herttuala, M.D., Ph.D., professor of molecular medicine at the University of Kuoppio, Finland.

"This damage – rather than a progression of heart disease – is believed to cause rapid growth of new cells in the vessel wall, which can cause re-blockage, or restenosis, in the vessel," he says.


Earlier studies suggested that a key player in this process is a biological reaction called oxidative stress. When the endothelium – the blood vessel lining – is damaged, it sends a signal that increases oxidative stress, which means that the body produces more free radicals. The oxygen derivatives known as free radicals are very active chemical compounds "that can destroy almost anything," he says.

One of the most common of these compounds is the superoxide anion, a free radical that increases when the endothelium is damaged. At the same time, endothelial damage causes a decrease in concentrations of vascular superoxide dismutase or SOD, an enzyme that works inside and outside cells as a powerful antioxidant to control levels of free radicals. Yla-Herttuala and his colleagues theorized that by injecting the gene for extra cellular superoxide dismutase (EC-SOD) into damaged blood vessels, they could control free radical damage and thereby short-circuit the process that leads to restenosis.

In the study they tested this hypothesis by using a deactivated virus to deliver EC-SOD to cells in the arterial walls of animals. Researchers treated 18 New Zealand white rabbits with the gene and 18 with placebo. The animals were analyzed two and four weeks later to determine if the gene therapy had worked. At each follow-up the researchers confirmed that the gene transfer was successful.

At two weeks the EC-SOD group had 10-fold fewer macrophages (markers of inflammation) than the control group and 20-fold less macrophage accumulation at four weeks. Moreover, there was a significant reduction in superoxide anion production in the active gene transfer group, he says.

"EC-SOD has already been purified and commercially produced. The virus that we used has been similarly tested, so we expect that it will only take about two years to complete pre-clinical studies before we can begin human trials," Yla-Herttuala says.

In human studies, EC-SOD would be transferred "after a stent is placed and it would be delivered in the stented area and in the areas immediately outside the stent. The study demonstrates that the enzyme is also secreted by the cells after transfer so that it affects both the immediate site of transfer and the areas within a few centimeters of that site."

Co-authors were Mikko O. Laukkanen, Ph.D.; Antti Kivelä, M.D.; Tuomas Rissanen, B.M.; Juha Rutanen, B.M.; Minna K. Karkkainen, M.Sc.; Olli Leppanen, M.D.; and Jan Hinrich Brasen, M.D., Ph.D.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>