Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy promising for preventing restenosis

17.09.2002


An experimental gene transfer technique shut down cell re-growth in the arteries’ interior lining and reduced the inflammatory response – two main causes of re-narrowing of newly opened blood vessels, researchers report in today’s rapid access issue of Circulation: Journal of the American Heart Association.



The process that opens blocked blood vessels – either inflating a tiny balloon to force open the narrowed vessel (angioplasty) or inserting a tiny mesh tube called a stent to serve as a scaffold to widen the opening – can damage the delicate lining of blood vessels, says Seppo Yla-Herttuala, M.D., Ph.D., professor of molecular medicine at the University of Kuoppio, Finland.

"This damage – rather than a progression of heart disease – is believed to cause rapid growth of new cells in the vessel wall, which can cause re-blockage, or restenosis, in the vessel," he says.


Earlier studies suggested that a key player in this process is a biological reaction called oxidative stress. When the endothelium – the blood vessel lining – is damaged, it sends a signal that increases oxidative stress, which means that the body produces more free radicals. The oxygen derivatives known as free radicals are very active chemical compounds "that can destroy almost anything," he says.

One of the most common of these compounds is the superoxide anion, a free radical that increases when the endothelium is damaged. At the same time, endothelial damage causes a decrease in concentrations of vascular superoxide dismutase or SOD, an enzyme that works inside and outside cells as a powerful antioxidant to control levels of free radicals. Yla-Herttuala and his colleagues theorized that by injecting the gene for extra cellular superoxide dismutase (EC-SOD) into damaged blood vessels, they could control free radical damage and thereby short-circuit the process that leads to restenosis.

In the study they tested this hypothesis by using a deactivated virus to deliver EC-SOD to cells in the arterial walls of animals. Researchers treated 18 New Zealand white rabbits with the gene and 18 with placebo. The animals were analyzed two and four weeks later to determine if the gene therapy had worked. At each follow-up the researchers confirmed that the gene transfer was successful.

At two weeks the EC-SOD group had 10-fold fewer macrophages (markers of inflammation) than the control group and 20-fold less macrophage accumulation at four weeks. Moreover, there was a significant reduction in superoxide anion production in the active gene transfer group, he says.

"EC-SOD has already been purified and commercially produced. The virus that we used has been similarly tested, so we expect that it will only take about two years to complete pre-clinical studies before we can begin human trials," Yla-Herttuala says.

In human studies, EC-SOD would be transferred "after a stent is placed and it would be delivered in the stented area and in the areas immediately outside the stent. The study demonstrates that the enzyme is also secreted by the cells after transfer so that it affects both the immediate site of transfer and the areas within a few centimeters of that site."

Co-authors were Mikko O. Laukkanen, Ph.D.; Antti Kivelä, M.D.; Tuomas Rissanen, B.M.; Juha Rutanen, B.M.; Minna K. Karkkainen, M.Sc.; Olli Leppanen, M.D.; and Jan Hinrich Brasen, M.D., Ph.D.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>