Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research reveals a more complete picture of breast tissue


A team of Dartmouth engineers and doctors are trying to find more comfortable and comprehensive ways to examine breast tissue to better detect and diagnose breast cancer. The Dartmouth group is simultaneously developing and testing four different breast imaging techniques.

The multidisciplinary Dartmouth team includes researchers from the Thayer School of Engineering and Dartmouth Medical School, and they are working under the auspices of the Norris Cotton Cancer Center and the department of radiology at Dartmouth-Hitchcock Medical Center. Halfway through their five-year, $7 million grant from the National Cancer Institute to study four techniques for breast imaging, the group is learning a great deal about breast tissue structure and behavior through magnetic resonance elastography (MRE), electrical impedance spectral imaging (EIS), microwave imaging spectroscopy (MIS), and near infrared (NIR) spectral imaging.

It’s the combination of these four techniques that sets the Dartmouth program apart. Their rationale is that one of the methods by itself may not provide the complete picture, but by using more than one technique, there should be added value.

"I think we’re the only group looking at these four methods simultaneously," says Keith Paulsen, engineering professor and one of the principal investigators with the Breast Imaging Project.

By collaborating across disciplines, the researchers have been able to take prototype equipment from the drawing board, to the laboratory, to the patient relatively quickly.

"The research is preliminary, but we are progressing," says Steven Poplack, associate professor of radiology and of obstetrics and gynecology. "We’re still gathering basic information about the clinical characteristics of normal breast tissue. Once we know what’s normal, we can then start working on recognizing what’s abnormal."

The new imaging methods are not invasive nor particularly uncomfortable for participants, and they all provide more detailed information about different properties of breast tissue.

"We hope our research can answer some of the anatomical and physiological questions," says Paulsen. "Our data provides quantitative information, and we hope to determine a threshold value that indicates an abnormality."

The four different techniques:

  • MRE: Using a magnetic resonance machine (the same one used in MRI exams), this test measures tissue hardness or elasticity. While in "the magnet," the breast tissue vibrates 100 times a second with very small amplitudes of less than a millimeter to determine how the tissue moves. The exam provides an image with corresponding numerical values for each portion of the breast.
  • EIS: This painless test uses a very low voltage electrode system to examine how the breast tissue conducts and stores electricity. Living cell membranes carry an electric potential that affect the way a current flows, and different cancer cells have different electrical characteristics.
  • MIS: This exam involves the propagation of very low levels (1000 times less than a cell phone) of microwave energy through breast tissue to measure electrical properties. This technique is particularly sensitive to water. Generally, tumors have been found to have more water and blood than regular tissue.
  • NIR: Infrared light is sensitive to blood, so by sending infrared light through breast tissue with a fiber optic array, the researchers are able to locate and quantify regions of oxygenated and deoxygenated hemoglobin. This might help detect early tumor growth and characterize the stage of a tumor by learning about its vascular makeup. Different levels of blood vessel activity in a tumor influence the effectiveness of treatment, so knowing the vascularity stage of a tumor should help design better treatment regimes.

During the first two and a half years of this five-year National Cancer Institute grant, the group has made significant progress on the technical aspects of the imaging techniques. They have improved the tools and manner of delivery so the exams are more comfortable for the participants.

For the next two and a half years, the researchers will focus on a controlled trial with 150 subjects. The goal is to rigorously test the four techniques and gather data to inform the detection of abnormalities and their subsequent diagnoses.

Sue Knapp | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>