Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals a more complete picture of breast tissue

17.09.2002


A team of Dartmouth engineers and doctors are trying to find more comfortable and comprehensive ways to examine breast tissue to better detect and diagnose breast cancer. The Dartmouth group is simultaneously developing and testing four different breast imaging techniques.



The multidisciplinary Dartmouth team includes researchers from the Thayer School of Engineering and Dartmouth Medical School, and they are working under the auspices of the Norris Cotton Cancer Center and the department of radiology at Dartmouth-Hitchcock Medical Center. Halfway through their five-year, $7 million grant from the National Cancer Institute to study four techniques for breast imaging, the group is learning a great deal about breast tissue structure and behavior through magnetic resonance elastography (MRE), electrical impedance spectral imaging (EIS), microwave imaging spectroscopy (MIS), and near infrared (NIR) spectral imaging.

It’s the combination of these four techniques that sets the Dartmouth program apart. Their rationale is that one of the methods by itself may not provide the complete picture, but by using more than one technique, there should be added value.


"I think we’re the only group looking at these four methods simultaneously," says Keith Paulsen, engineering professor and one of the principal investigators with the Breast Imaging Project.

By collaborating across disciplines, the researchers have been able to take prototype equipment from the drawing board, to the laboratory, to the patient relatively quickly.

"The research is preliminary, but we are progressing," says Steven Poplack, associate professor of radiology and of obstetrics and gynecology. "We’re still gathering basic information about the clinical characteristics of normal breast tissue. Once we know what’s normal, we can then start working on recognizing what’s abnormal."

The new imaging methods are not invasive nor particularly uncomfortable for participants, and they all provide more detailed information about different properties of breast tissue.

"We hope our research can answer some of the anatomical and physiological questions," says Paulsen. "Our data provides quantitative information, and we hope to determine a threshold value that indicates an abnormality."

The four different techniques:

  • MRE: Using a magnetic resonance machine (the same one used in MRI exams), this test measures tissue hardness or elasticity. While in "the magnet," the breast tissue vibrates 100 times a second with very small amplitudes of less than a millimeter to determine how the tissue moves. The exam provides an image with corresponding numerical values for each portion of the breast.
  • EIS: This painless test uses a very low voltage electrode system to examine how the breast tissue conducts and stores electricity. Living cell membranes carry an electric potential that affect the way a current flows, and different cancer cells have different electrical characteristics.
  • MIS: This exam involves the propagation of very low levels (1000 times less than a cell phone) of microwave energy through breast tissue to measure electrical properties. This technique is particularly sensitive to water. Generally, tumors have been found to have more water and blood than regular tissue.
  • NIR: Infrared light is sensitive to blood, so by sending infrared light through breast tissue with a fiber optic array, the researchers are able to locate and quantify regions of oxygenated and deoxygenated hemoglobin. This might help detect early tumor growth and characterize the stage of a tumor by learning about its vascular makeup. Different levels of blood vessel activity in a tumor influence the effectiveness of treatment, so knowing the vascularity stage of a tumor should help design better treatment regimes.

During the first two and a half years of this five-year National Cancer Institute grant, the group has made significant progress on the technical aspects of the imaging techniques. They have improved the tools and manner of delivery so the exams are more comfortable for the participants.

For the next two and a half years, the researchers will focus on a controlled trial with 150 subjects. The goal is to rigorously test the four techniques and gather data to inform the detection of abnormalities and their subsequent diagnoses.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/~news/releases/sept02/imaging.shtml

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>