Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ball to occlude the aorta during cardiopulmonary resuscitation

16.09.2002


Jesus Manuel Labandeira in his doctoral thesis, read in the University of Navarre, tested this technique in pigs due to the similarity to the human cardiovascular system.



According to the results obtained by doctor Labandeira, the use of a occlusion ball in the aorta duplicates the blood pressure that goes to heart and brain during cardiopulmonary resuscitation.

Improving the results of CPR


Cardiopulmonary resuscitation (CPR) constitutes one of the most emblematic activities of emergency services since its introduction in the 60s. This technique involves ventilating the patient and applying him simultaneously a series of thoracic compressions. However, it has been observed that although the CPR is done correctly, blood quantity that circulates is limited, the blood flow does not even reach 50 % of normal values. Now the application of new techniques to increase blood quantity that goes to heart and brain is being tested.

In order to improve the results of CPR, Jesus Manuel Labandeira has made a kind of short circuit. It involves introducing a catheter with a ball through the groin via femoral artery and installing it in the aorta, under the diaphragm. When the ball is pumped up, blood is redistributed so that when blood comes out from heart it does not reach less vital extremities, but it goes to heart and brain, the most important organs.

According to doctor Labandeira, introducing a ball in the aorta, blood pressure that comes to heart and brain is practically twice as much as during normal CPR. At aortic arterial pressure it can be observed a similar phenomenon. The arterial pressure of a living person is 120 mm Hg systolic and 80 mm Hg diastolic (120/80). At the beginning of a standard CPR, the values are about 41 mm Hg systolic and 20 mm Hg diastolic (41/20). By using the ball the pressure is 74 mm Hg systolic and 39 mm Hg diastolic (74/39). They are low values, but it is twice as much as during normal CPR.

So the conclusion of the thesis of Labandeira shows that the use of a intra-aortic occlusion ball increases the systolic, diastolic and average arterial pressures, as well as the coronary and cerebral perfusion pressures. In order to obtain better results, it is important to apply this technique in time. On the other side, the necropsy carried out to pigs by Labandeira after the experiment shown that there were no internal damages produced in viscera or vascular structures.

Experiment with 14 pigs

The study of Labandeira has been done with fourteen pigs, because it is one of the most similar animals to human from the cardiovascular point of view.

A situation of cardiorespiratory arrest was introduced to the pig via ventricular fibrillation, once it was given an anaesthetic to avoid suffering. Then, CPR was started, subjecting the pig to four periods of five minutes each, alternating the CPR with and without intra-aortic occlusion ball. The results with the ball were better than without it.

Bearing in mind the future application of that system in humans, the introduction of a ball into the aorta does not suppose a significant difficulty from the technical point of view, because the femoral artery is relatively a simple way of vascular access, allowing the introduction of the catheter in less that five minutes.

The thesis of Labandeira has been published in the scientific magazine American Journal of Emergency Medicine. Actually, two more groups of scientist are investigating this subject; one in Sweden and the other one in the United States.

Garazi Andonegi | alfa

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>