Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ball to occlude the aorta during cardiopulmonary resuscitation

16.09.2002


Jesus Manuel Labandeira in his doctoral thesis, read in the University of Navarre, tested this technique in pigs due to the similarity to the human cardiovascular system.



According to the results obtained by doctor Labandeira, the use of a occlusion ball in the aorta duplicates the blood pressure that goes to heart and brain during cardiopulmonary resuscitation.

Improving the results of CPR


Cardiopulmonary resuscitation (CPR) constitutes one of the most emblematic activities of emergency services since its introduction in the 60s. This technique involves ventilating the patient and applying him simultaneously a series of thoracic compressions. However, it has been observed that although the CPR is done correctly, blood quantity that circulates is limited, the blood flow does not even reach 50 % of normal values. Now the application of new techniques to increase blood quantity that goes to heart and brain is being tested.

In order to improve the results of CPR, Jesus Manuel Labandeira has made a kind of short circuit. It involves introducing a catheter with a ball through the groin via femoral artery and installing it in the aorta, under the diaphragm. When the ball is pumped up, blood is redistributed so that when blood comes out from heart it does not reach less vital extremities, but it goes to heart and brain, the most important organs.

According to doctor Labandeira, introducing a ball in the aorta, blood pressure that comes to heart and brain is practically twice as much as during normal CPR. At aortic arterial pressure it can be observed a similar phenomenon. The arterial pressure of a living person is 120 mm Hg systolic and 80 mm Hg diastolic (120/80). At the beginning of a standard CPR, the values are about 41 mm Hg systolic and 20 mm Hg diastolic (41/20). By using the ball the pressure is 74 mm Hg systolic and 39 mm Hg diastolic (74/39). They are low values, but it is twice as much as during normal CPR.

So the conclusion of the thesis of Labandeira shows that the use of a intra-aortic occlusion ball increases the systolic, diastolic and average arterial pressures, as well as the coronary and cerebral perfusion pressures. In order to obtain better results, it is important to apply this technique in time. On the other side, the necropsy carried out to pigs by Labandeira after the experiment shown that there were no internal damages produced in viscera or vascular structures.

Experiment with 14 pigs

The study of Labandeira has been done with fourteen pigs, because it is one of the most similar animals to human from the cardiovascular point of view.

A situation of cardiorespiratory arrest was introduced to the pig via ventricular fibrillation, once it was given an anaesthetic to avoid suffering. Then, CPR was started, subjecting the pig to four periods of five minutes each, alternating the CPR with and without intra-aortic occlusion ball. The results with the ball were better than without it.

Bearing in mind the future application of that system in humans, the introduction of a ball into the aorta does not suppose a significant difficulty from the technical point of view, because the femoral artery is relatively a simple way of vascular access, allowing the introduction of the catheter in less that five minutes.

The thesis of Labandeira has been published in the scientific magazine American Journal of Emergency Medicine. Actually, two more groups of scientist are investigating this subject; one in Sweden and the other one in the United States.

Garazi Andonegi | alfa

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>