Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ball to occlude the aorta during cardiopulmonary resuscitation


Jesus Manuel Labandeira in his doctoral thesis, read in the University of Navarre, tested this technique in pigs due to the similarity to the human cardiovascular system.

According to the results obtained by doctor Labandeira, the use of a occlusion ball in the aorta duplicates the blood pressure that goes to heart and brain during cardiopulmonary resuscitation.

Improving the results of CPR

Cardiopulmonary resuscitation (CPR) constitutes one of the most emblematic activities of emergency services since its introduction in the 60s. This technique involves ventilating the patient and applying him simultaneously a series of thoracic compressions. However, it has been observed that although the CPR is done correctly, blood quantity that circulates is limited, the blood flow does not even reach 50 % of normal values. Now the application of new techniques to increase blood quantity that goes to heart and brain is being tested.

In order to improve the results of CPR, Jesus Manuel Labandeira has made a kind of short circuit. It involves introducing a catheter with a ball through the groin via femoral artery and installing it in the aorta, under the diaphragm. When the ball is pumped up, blood is redistributed so that when blood comes out from heart it does not reach less vital extremities, but it goes to heart and brain, the most important organs.

According to doctor Labandeira, introducing a ball in the aorta, blood pressure that comes to heart and brain is practically twice as much as during normal CPR. At aortic arterial pressure it can be observed a similar phenomenon. The arterial pressure of a living person is 120 mm Hg systolic and 80 mm Hg diastolic (120/80). At the beginning of a standard CPR, the values are about 41 mm Hg systolic and 20 mm Hg diastolic (41/20). By using the ball the pressure is 74 mm Hg systolic and 39 mm Hg diastolic (74/39). They are low values, but it is twice as much as during normal CPR.

So the conclusion of the thesis of Labandeira shows that the use of a intra-aortic occlusion ball increases the systolic, diastolic and average arterial pressures, as well as the coronary and cerebral perfusion pressures. In order to obtain better results, it is important to apply this technique in time. On the other side, the necropsy carried out to pigs by Labandeira after the experiment shown that there were no internal damages produced in viscera or vascular structures.

Experiment with 14 pigs

The study of Labandeira has been done with fourteen pigs, because it is one of the most similar animals to human from the cardiovascular point of view.

A situation of cardiorespiratory arrest was introduced to the pig via ventricular fibrillation, once it was given an anaesthetic to avoid suffering. Then, CPR was started, subjecting the pig to four periods of five minutes each, alternating the CPR with and without intra-aortic occlusion ball. The results with the ball were better than without it.

Bearing in mind the future application of that system in humans, the introduction of a ball into the aorta does not suppose a significant difficulty from the technical point of view, because the femoral artery is relatively a simple way of vascular access, allowing the introduction of the catheter in less that five minutes.

The thesis of Labandeira has been published in the scientific magazine American Journal of Emergency Medicine. Actually, two more groups of scientist are investigating this subject; one in Sweden and the other one in the United States.

Garazi Andonegi | alfa

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>