Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers discover toxicity risks for widely used chemicals

16.09.2002


Research at Oregon Health & Science University (OHSU) has revealed that certain chemical ingredients of gasoline, jet fuel and other solvents may pose a greater health hazard than first thought. Scientists at the OHSU Center for Research on Occupational and Environmental Toxicology (CROET) have shown that a benzene derivative damages the nervous system. In fact, the substance is much more active than non-benzene analogs already known to cause peripheral nerve damage (loss of limb sensation and muscle weakness) in solvent-exposed workers. The research team was led by Mohammad Sabri, Ph.D., and Peter Spencer, Ph.D., F.R.C. Path., of OHSU. The conclusions of the research are printed in the September 2002 issue of the Journal of Toxicology and Applied Pharmacology.

"Previously, researchers believed that benzene derivatives were unable to damage the nervous system," said Spencer. "The substance we studied - 1,2-diacetylbenzene - has a ring-like (aromatic) chemical structure in contrast to the straight-chain (aliphatic) solvents that are well established causes of occupation-related nerve damage. Our data suggest the aromatic substance actually has a much higher neurotoxic potency. In addition, the new findings raise the possibility that related aromatic chemicals may also damage the nervous system. We believe these substances should be tested for neurotoxicity, and occupational exposures should be regulated to prevent illness among workers who come in contact with these chemicals."

One of these related aromatic chemicals, a substance known as Musk tetralin, was used until the 1980s by the fragrance industry to hide product odor in soaps and fragrances. The industry voluntarily withdrew Musk tetralin worldwide after Spencer and fellow researchers demonstrated the substance was neurotoxic. Because aromatic hydrocarbons have been used in such large quantities by the public and in commerce, the chemicals are now common soil and water contaminants.



"One surprising property of these neurotoxic substances, including Musk tetralin and 1,2-diacetylbenzene, is their ability to cause blue discoloration of tissue and urine to turn green. Perhaps this property could be used as a biological marker of exposure to these hazardous substances," said Sabri. "We hope to develop a method by which urine or other fluids can be tested for the presence of the blue pigment. Since urine discoloration occurs before neurological disease, it may serve to help prevent onset of disease among those exposed to these substances in the workplace or at contaminated sites."

The research was conducted through the OHSU/CROET Superfund Basic Research Program and NeuroToxicogenomics Research Center, both funded by the National Institute for Environmental Health Sciences, a component of the National Institutes of Health. Leadership of both of these research centers resides in CROET.

Specifics:
Peter Spencer, Ph.D., F.R.C.Path., senior scientist and director, CROET; principal investigator, NIEHS-supported Superfund Basic Research Center; principal investigator, NIEHS-supported Neurotoxicogenomics and Child Health Research Center; and professor of neurology, OHSU School of Medicine

Mohammad I. Sabri, Ph.D., associate professor of neurology, OHSU School of Medicine; senior investigator, CROET For a complete listing of OHSU press releases, visit www.ohsu.edu/news

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>