Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers discover toxicity risks for widely used chemicals

16.09.2002


Research at Oregon Health & Science University (OHSU) has revealed that certain chemical ingredients of gasoline, jet fuel and other solvents may pose a greater health hazard than first thought. Scientists at the OHSU Center for Research on Occupational and Environmental Toxicology (CROET) have shown that a benzene derivative damages the nervous system. In fact, the substance is much more active than non-benzene analogs already known to cause peripheral nerve damage (loss of limb sensation and muscle weakness) in solvent-exposed workers. The research team was led by Mohammad Sabri, Ph.D., and Peter Spencer, Ph.D., F.R.C. Path., of OHSU. The conclusions of the research are printed in the September 2002 issue of the Journal of Toxicology and Applied Pharmacology.

"Previously, researchers believed that benzene derivatives were unable to damage the nervous system," said Spencer. "The substance we studied - 1,2-diacetylbenzene - has a ring-like (aromatic) chemical structure in contrast to the straight-chain (aliphatic) solvents that are well established causes of occupation-related nerve damage. Our data suggest the aromatic substance actually has a much higher neurotoxic potency. In addition, the new findings raise the possibility that related aromatic chemicals may also damage the nervous system. We believe these substances should be tested for neurotoxicity, and occupational exposures should be regulated to prevent illness among workers who come in contact with these chemicals."

One of these related aromatic chemicals, a substance known as Musk tetralin, was used until the 1980s by the fragrance industry to hide product odor in soaps and fragrances. The industry voluntarily withdrew Musk tetralin worldwide after Spencer and fellow researchers demonstrated the substance was neurotoxic. Because aromatic hydrocarbons have been used in such large quantities by the public and in commerce, the chemicals are now common soil and water contaminants.



"One surprising property of these neurotoxic substances, including Musk tetralin and 1,2-diacetylbenzene, is their ability to cause blue discoloration of tissue and urine to turn green. Perhaps this property could be used as a biological marker of exposure to these hazardous substances," said Sabri. "We hope to develop a method by which urine or other fluids can be tested for the presence of the blue pigment. Since urine discoloration occurs before neurological disease, it may serve to help prevent onset of disease among those exposed to these substances in the workplace or at contaminated sites."

The research was conducted through the OHSU/CROET Superfund Basic Research Program and NeuroToxicogenomics Research Center, both funded by the National Institute for Environmental Health Sciences, a component of the National Institutes of Health. Leadership of both of these research centers resides in CROET.

Specifics:
Peter Spencer, Ph.D., F.R.C.Path., senior scientist and director, CROET; principal investigator, NIEHS-supported Superfund Basic Research Center; principal investigator, NIEHS-supported Neurotoxicogenomics and Child Health Research Center; and professor of neurology, OHSU School of Medicine

Mohammad I. Sabri, Ph.D., associate professor of neurology, OHSU School of Medicine; senior investigator, CROET For a complete listing of OHSU press releases, visit www.ohsu.edu/news

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>