Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


OHSU researchers discover toxicity risks for widely used chemicals


Research at Oregon Health & Science University (OHSU) has revealed that certain chemical ingredients of gasoline, jet fuel and other solvents may pose a greater health hazard than first thought. Scientists at the OHSU Center for Research on Occupational and Environmental Toxicology (CROET) have shown that a benzene derivative damages the nervous system. In fact, the substance is much more active than non-benzene analogs already known to cause peripheral nerve damage (loss of limb sensation and muscle weakness) in solvent-exposed workers. The research team was led by Mohammad Sabri, Ph.D., and Peter Spencer, Ph.D., F.R.C. Path., of OHSU. The conclusions of the research are printed in the September 2002 issue of the Journal of Toxicology and Applied Pharmacology.

"Previously, researchers believed that benzene derivatives were unable to damage the nervous system," said Spencer. "The substance we studied - 1,2-diacetylbenzene - has a ring-like (aromatic) chemical structure in contrast to the straight-chain (aliphatic) solvents that are well established causes of occupation-related nerve damage. Our data suggest the aromatic substance actually has a much higher neurotoxic potency. In addition, the new findings raise the possibility that related aromatic chemicals may also damage the nervous system. We believe these substances should be tested for neurotoxicity, and occupational exposures should be regulated to prevent illness among workers who come in contact with these chemicals."

One of these related aromatic chemicals, a substance known as Musk tetralin, was used until the 1980s by the fragrance industry to hide product odor in soaps and fragrances. The industry voluntarily withdrew Musk tetralin worldwide after Spencer and fellow researchers demonstrated the substance was neurotoxic. Because aromatic hydrocarbons have been used in such large quantities by the public and in commerce, the chemicals are now common soil and water contaminants.

"One surprising property of these neurotoxic substances, including Musk tetralin and 1,2-diacetylbenzene, is their ability to cause blue discoloration of tissue and urine to turn green. Perhaps this property could be used as a biological marker of exposure to these hazardous substances," said Sabri. "We hope to develop a method by which urine or other fluids can be tested for the presence of the blue pigment. Since urine discoloration occurs before neurological disease, it may serve to help prevent onset of disease among those exposed to these substances in the workplace or at contaminated sites."

The research was conducted through the OHSU/CROET Superfund Basic Research Program and NeuroToxicogenomics Research Center, both funded by the National Institute for Environmental Health Sciences, a component of the National Institutes of Health. Leadership of both of these research centers resides in CROET.

Peter Spencer, Ph.D., F.R.C.Path., senior scientist and director, CROET; principal investigator, NIEHS-supported Superfund Basic Research Center; principal investigator, NIEHS-supported Neurotoxicogenomics and Child Health Research Center; and professor of neurology, OHSU School of Medicine

Mohammad I. Sabri, Ph.D., associate professor of neurology, OHSU School of Medicine; senior investigator, CROET For a complete listing of OHSU press releases, visit

Jim Newman | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>