Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chlorine dioxide gas kills dangerous biological contaminants

13.09.2002


The same sanitizing agent used to rid federal office buildings of anthrax – chlorine dioxide gas – can effectively eliminate deadly bacteria from apples and other fruits and vegetables, according to Purdue University researchers.



Scientists at Purdue began experiments using the gas to kill pathogens found on food long before anthrax was detected in mail sent to offices in New York and Washington, D.C., shortly after the terrorist attacks one year ago. The latest university test measured how effectively different potencies of chlorine dioxide (ClO2) gas used over various periods of time could kill Listeria monocytogenes cells on apples.

Results of the study, published in the September issue of Food Microbiology, demonstrated that the vapor was able to eradicate all of the contaminant on the fruit’s skin and significantly reduce the bacteria in the stem cavity and the calyx, said Richard Linton, director of Purdue’s Center for Food Safety Engineering and senior author. The calyx is the apple’s bottom, directly opposite from the stem cavity.


"We see more and more cases of food-borne diseases associated with fruits and vegetables," Linton said. "Some of this is because we encourage people, especially children and the elderly, to eat more and more of these types of foods for added health benefits. Yet these are two of the groups most susceptible to bacteria on food.

"Just 10 to 100 cells of Listeria on a piece of food can cause illness, and it’s possible for 1,000 to 10,000 cells to be on a piece of fruit. We need to develop ways to make food safer; traditional sanitation methods to remove pathogens are not effective enough to meet these new standards."

Although Listeria is relatively rare, it is considered the most deadly of the food-borne pathogens with a 20 percent fatality rate. The Clinton administration issued a "no tolerance" edict for Listeria in processed and ready-to-eat foods, such as hot dogs, and in dairy products. Under the policy, if one organism is found on a piece of food, the whole batch must be discarded and/or recalled from stores, warehouses and consumers’ shelves.

In addition, the FDA requires that sanitizers be effective enough to reduce organisms by at least 100,000 fold for Listeria, E. coli O157:H7, and Salmonella. In this study, Linton and his team achieved this level of Listeria elimination on the apple skin. Even on the stem cavity and calyx, the gas reduced the pathogen to a far greater extent than currently possible with other methods.

Another of the paper’s authors, Purdue food science researcher Yingchan Han, said one reason Listeria was used for the study is because it’s hardy; it can survive in refrigeration and is difficult to inactivate.

"Using the chlorine dioxide gas makes it possible to reduce the bacteria before the apples are cut up or mashed, a significant breakthrough for decontamination processes at small juice-producing companies," Han said. "They often don’t have the pasteurization heating systems necessary to meet USDA requirements for eliminating biological contaminants. These processors produce unpasteurized juice."

The chlorine dioxide process is "extraordinarily" better than other chemical methods of eliminating pathogens on produce, he said.

In the current research, the chlorine dioxide gas, used at a concentration of 4 mg per liter for 30 minutes, lowered the Listeria organisms a minimum of more than 1,000-fold for all three areas of apple tested. On the pulp, the average was more than a 100,000-fold reduction. These results support previous test results when Purdue scientists used the gas to sanitize green peppers.

Linton said the gas is so effective because it’s a strong oxidizing agent.

"Oxidizing agents disrupt the cell membrane, in this case of the bacteria, and this causes the cell to die," he said. "The chlorine dioxide gas is 1,000 times more effective than any other method tried so far for eliminating food-borne pathogens."

He and Han said they don’t believe this process will work well on already cut fruits and vegetables, and not at all for some varieties, such as lettuce, because it would likely affect the color. However, they will be testing the gas on other pathogens, such as Salmonella or E. coli, and on other foods. They also will be determining ways to make the process viable for use by commercial food producers.

The other scientist involved in this study was Jinhua Du.

The U.S. Department of Agriculture funded this research.

Purdue’s Center for Food Safety Engineering includes nearly 90 university scientists collaborating with USDA-Agricultural Research Service scientists to find faster, more exact ways to detect biological and chemical food-borne contaminants and to protect against them.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Sources:Richard Linton, (765) 494-6481, lintonr@foodsci.purdue.edu

Yingchang Han, (765) 494-8267, hany@foodsci.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu; http://www.agriculture.purdue.edu/AgComm/public/agnews/

Susan A. Steeves | EurekAlert!
Further information:
http://www.cdc.gov/ncidod/eid
http://www.arserrc.gov/www/
http://www.fsis.usda.gov/

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>