Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chlorine dioxide gas kills dangerous biological contaminants


The same sanitizing agent used to rid federal office buildings of anthrax – chlorine dioxide gas – can effectively eliminate deadly bacteria from apples and other fruits and vegetables, according to Purdue University researchers.

Scientists at Purdue began experiments using the gas to kill pathogens found on food long before anthrax was detected in mail sent to offices in New York and Washington, D.C., shortly after the terrorist attacks one year ago. The latest university test measured how effectively different potencies of chlorine dioxide (ClO2) gas used over various periods of time could kill Listeria monocytogenes cells on apples.

Results of the study, published in the September issue of Food Microbiology, demonstrated that the vapor was able to eradicate all of the contaminant on the fruit’s skin and significantly reduce the bacteria in the stem cavity and the calyx, said Richard Linton, director of Purdue’s Center for Food Safety Engineering and senior author. The calyx is the apple’s bottom, directly opposite from the stem cavity.

"We see more and more cases of food-borne diseases associated with fruits and vegetables," Linton said. "Some of this is because we encourage people, especially children and the elderly, to eat more and more of these types of foods for added health benefits. Yet these are two of the groups most susceptible to bacteria on food.

"Just 10 to 100 cells of Listeria on a piece of food can cause illness, and it’s possible for 1,000 to 10,000 cells to be on a piece of fruit. We need to develop ways to make food safer; traditional sanitation methods to remove pathogens are not effective enough to meet these new standards."

Although Listeria is relatively rare, it is considered the most deadly of the food-borne pathogens with a 20 percent fatality rate. The Clinton administration issued a "no tolerance" edict for Listeria in processed and ready-to-eat foods, such as hot dogs, and in dairy products. Under the policy, if one organism is found on a piece of food, the whole batch must be discarded and/or recalled from stores, warehouses and consumers’ shelves.

In addition, the FDA requires that sanitizers be effective enough to reduce organisms by at least 100,000 fold for Listeria, E. coli O157:H7, and Salmonella. In this study, Linton and his team achieved this level of Listeria elimination on the apple skin. Even on the stem cavity and calyx, the gas reduced the pathogen to a far greater extent than currently possible with other methods.

Another of the paper’s authors, Purdue food science researcher Yingchan Han, said one reason Listeria was used for the study is because it’s hardy; it can survive in refrigeration and is difficult to inactivate.

"Using the chlorine dioxide gas makes it possible to reduce the bacteria before the apples are cut up or mashed, a significant breakthrough for decontamination processes at small juice-producing companies," Han said. "They often don’t have the pasteurization heating systems necessary to meet USDA requirements for eliminating biological contaminants. These processors produce unpasteurized juice."

The chlorine dioxide process is "extraordinarily" better than other chemical methods of eliminating pathogens on produce, he said.

In the current research, the chlorine dioxide gas, used at a concentration of 4 mg per liter for 30 minutes, lowered the Listeria organisms a minimum of more than 1,000-fold for all three areas of apple tested. On the pulp, the average was more than a 100,000-fold reduction. These results support previous test results when Purdue scientists used the gas to sanitize green peppers.

Linton said the gas is so effective because it’s a strong oxidizing agent.

"Oxidizing agents disrupt the cell membrane, in this case of the bacteria, and this causes the cell to die," he said. "The chlorine dioxide gas is 1,000 times more effective than any other method tried so far for eliminating food-borne pathogens."

He and Han said they don’t believe this process will work well on already cut fruits and vegetables, and not at all for some varieties, such as lettuce, because it would likely affect the color. However, they will be testing the gas on other pathogens, such as Salmonella or E. coli, and on other foods. They also will be determining ways to make the process viable for use by commercial food producers.

The other scientist involved in this study was Jinhua Du.

The U.S. Department of Agriculture funded this research.

Purdue’s Center for Food Safety Engineering includes nearly 90 university scientists collaborating with USDA-Agricultural Research Service scientists to find faster, more exact ways to detect biological and chemical food-borne contaminants and to protect against them.

Writer: Susan A. Steeves, (765) 496-7481,

Sources:Richard Linton, (765) 494-6481,

Yingchang Han, (765) 494-8267,

Ag Communications: (765) 494-2722; Beth Forbes,;

Susan A. Steeves | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>