Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chlorine dioxide gas kills dangerous biological contaminants

13.09.2002


The same sanitizing agent used to rid federal office buildings of anthrax – chlorine dioxide gas – can effectively eliminate deadly bacteria from apples and other fruits and vegetables, according to Purdue University researchers.



Scientists at Purdue began experiments using the gas to kill pathogens found on food long before anthrax was detected in mail sent to offices in New York and Washington, D.C., shortly after the terrorist attacks one year ago. The latest university test measured how effectively different potencies of chlorine dioxide (ClO2) gas used over various periods of time could kill Listeria monocytogenes cells on apples.

Results of the study, published in the September issue of Food Microbiology, demonstrated that the vapor was able to eradicate all of the contaminant on the fruit’s skin and significantly reduce the bacteria in the stem cavity and the calyx, said Richard Linton, director of Purdue’s Center for Food Safety Engineering and senior author. The calyx is the apple’s bottom, directly opposite from the stem cavity.


"We see more and more cases of food-borne diseases associated with fruits and vegetables," Linton said. "Some of this is because we encourage people, especially children and the elderly, to eat more and more of these types of foods for added health benefits. Yet these are two of the groups most susceptible to bacteria on food.

"Just 10 to 100 cells of Listeria on a piece of food can cause illness, and it’s possible for 1,000 to 10,000 cells to be on a piece of fruit. We need to develop ways to make food safer; traditional sanitation methods to remove pathogens are not effective enough to meet these new standards."

Although Listeria is relatively rare, it is considered the most deadly of the food-borne pathogens with a 20 percent fatality rate. The Clinton administration issued a "no tolerance" edict for Listeria in processed and ready-to-eat foods, such as hot dogs, and in dairy products. Under the policy, if one organism is found on a piece of food, the whole batch must be discarded and/or recalled from stores, warehouses and consumers’ shelves.

In addition, the FDA requires that sanitizers be effective enough to reduce organisms by at least 100,000 fold for Listeria, E. coli O157:H7, and Salmonella. In this study, Linton and his team achieved this level of Listeria elimination on the apple skin. Even on the stem cavity and calyx, the gas reduced the pathogen to a far greater extent than currently possible with other methods.

Another of the paper’s authors, Purdue food science researcher Yingchan Han, said one reason Listeria was used for the study is because it’s hardy; it can survive in refrigeration and is difficult to inactivate.

"Using the chlorine dioxide gas makes it possible to reduce the bacteria before the apples are cut up or mashed, a significant breakthrough for decontamination processes at small juice-producing companies," Han said. "They often don’t have the pasteurization heating systems necessary to meet USDA requirements for eliminating biological contaminants. These processors produce unpasteurized juice."

The chlorine dioxide process is "extraordinarily" better than other chemical methods of eliminating pathogens on produce, he said.

In the current research, the chlorine dioxide gas, used at a concentration of 4 mg per liter for 30 minutes, lowered the Listeria organisms a minimum of more than 1,000-fold for all three areas of apple tested. On the pulp, the average was more than a 100,000-fold reduction. These results support previous test results when Purdue scientists used the gas to sanitize green peppers.

Linton said the gas is so effective because it’s a strong oxidizing agent.

"Oxidizing agents disrupt the cell membrane, in this case of the bacteria, and this causes the cell to die," he said. "The chlorine dioxide gas is 1,000 times more effective than any other method tried so far for eliminating food-borne pathogens."

He and Han said they don’t believe this process will work well on already cut fruits and vegetables, and not at all for some varieties, such as lettuce, because it would likely affect the color. However, they will be testing the gas on other pathogens, such as Salmonella or E. coli, and on other foods. They also will be determining ways to make the process viable for use by commercial food producers.

The other scientist involved in this study was Jinhua Du.

The U.S. Department of Agriculture funded this research.

Purdue’s Center for Food Safety Engineering includes nearly 90 university scientists collaborating with USDA-Agricultural Research Service scientists to find faster, more exact ways to detect biological and chemical food-borne contaminants and to protect against them.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Sources:Richard Linton, (765) 494-6481, lintonr@foodsci.purdue.edu

Yingchang Han, (765) 494-8267, hany@foodsci.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu; http://www.agriculture.purdue.edu/AgComm/public/agnews/

Susan A. Steeves | EurekAlert!
Further information:
http://www.cdc.gov/ncidod/eid
http://www.arserrc.gov/www/
http://www.fsis.usda.gov/

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>