Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First biologic pacemaker created by gene therapy in guinea pigs

12.09.2002


Working with guinea pigs, Johns Hopkins scientists have created what is believed to be the first biologic pacemaker for the heart, paving the way for a genetically engineered alternative to implanted electronic pacemakers. The advance, reported in the Sept. 12 issue of Nature, uses gene therapy to convert a small fraction of guinea pigs’ heart muscle cells into specialized "pacing" cells.



"We now can envision a day when it will be possible to recreate an individual’s pacemaker cells or develop hybrid pacemakers -- part electronic and part biologic," says Eduardo Marbán, M.D., Ph.D., Michel Mirowski professor at Hopkins’ Institute of Molecular Cardiology, adding that clinical applications are still a few years away.

"Most applications of gene therapy try to cure a disease caused by a single defective or missing gene, but we used the cells’ genes as a tool box to tweak its function," adds Marbán. "This is akin to turning a clunky old car into a hot rod -- if you have the parts and expertise, it can be done."


In the Hopkins experiments, heart cells in the guinea pigs spontaneously and rhythmically "fired" after the scientists genetically altered the cells’ balance of potassium. Such a "biopacemaker" is a potentially important option for patients at too high a risk for infection from implanted electronic pacemakers or too small for an implanted device, say the researchers. "A biologic pacemaker should also be able to adjust to the body’s changing needs, whereas an electronic pacemaker, at least in its simplest form, does not," says Marbán. "Anything that normally makes our heart go pitter-pat doesn’t change the steady rhythm of the electronic pacemaker. Instead, people get tired very quickly."

Two tiny sets of "pacing" cells in the heart normally give the organ its regular beat by stimulating other cells to contract. If these specialized cells stop working or die, an implanted electronic pacemaker can keep the heartbeat going, a fact of life for hundreds of thousands of people.

"We’ve created a biologic pacemaker in the guinea pig, but now the hard work comes," says Marbán. "We need to fine tune it -- develop controlling strategies, find the optimum place to re-engineer the cells in the heart, control the frequency of the new pacemaker. But there is light at the end of the tunnel."

In the vast majority of heart muscle cells, a particular channel maintains a balance of potassium that makes it more difficult for them to "fire," so instead of being able to generate electricity on their own, they must be triggered by pacemaker cells.

The Hopkins scientists figured that altering this potassium balance might allow heart cells to regain the ability to fire without being triggered. Others had discovered a number of years ago that if just three specific building blocks of heart cells’ potassium channel (called the "inward rectifier potassium current") are altered, the potassium balance is disrupted.

The Hopkins scientists attached the gene for the defective channel to a virus, and also tacked on green fluorescent protein so infected cells would be easily identifiable. Virus-infected cells faithfully transcribe genes carried by the virus.

"This potassium channel acts like an anchor, keeping heart muscle cells from developing pacemaker-like abilities," says Marbán. "By blocking the channel, we effectively lifted the anchor, freeing the muscle cells to re-establish abilities they last held in the developing embryo."

Three to four days after injecting the gene-carrying virus into the heart muscle of guinea pigs, Junichiro Miake, Ph.D., then a postdoctoral fellow at Hopkins, saw that heart cells had begun making the defective potassium channel. Even more important, a new, faster, pace-setting impulse was clearly visible on electrocardiograms from the animals.

"When this channel is blocked, heart muscle cells that normally have to wait for stimulation begin to beat on their own," says Marbán. "In many important ways the guinea pig is similar to humans. Its cardiac electrophysiology is very similar, and this channel is as common in human heart muscle as in the guinea pig. We believe the same principles will prevail in humans."

Normally, one set of 1,000 to 3,000 pacemaker cells is found in the right upper chamber, or atrium, of the heart, and one set straddling the junction between the atrium and the lower chamber, or ventricle. Damage to either set of pacemaker cells or the connection between them can require an electronic pacemaker. About 250,000 electronic pacemakers, about the size of a personal digital assistant (PDA), are implanted each year in the U.S.


###

Joanna Downer | EurekAlert!
Further information:
http://www.nature.com/nature
http://www.nhlbi.nih.gov

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>