Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First biologic pacemaker created by gene therapy in guinea pigs

12.09.2002


Working with guinea pigs, Johns Hopkins scientists have created what is believed to be the first biologic pacemaker for the heart, paving the way for a genetically engineered alternative to implanted electronic pacemakers. The advance, reported in the Sept. 12 issue of Nature, uses gene therapy to convert a small fraction of guinea pigs’ heart muscle cells into specialized "pacing" cells.



"We now can envision a day when it will be possible to recreate an individual’s pacemaker cells or develop hybrid pacemakers -- part electronic and part biologic," says Eduardo Marbán, M.D., Ph.D., Michel Mirowski professor at Hopkins’ Institute of Molecular Cardiology, adding that clinical applications are still a few years away.

"Most applications of gene therapy try to cure a disease caused by a single defective or missing gene, but we used the cells’ genes as a tool box to tweak its function," adds Marbán. "This is akin to turning a clunky old car into a hot rod -- if you have the parts and expertise, it can be done."


In the Hopkins experiments, heart cells in the guinea pigs spontaneously and rhythmically "fired" after the scientists genetically altered the cells’ balance of potassium. Such a "biopacemaker" is a potentially important option for patients at too high a risk for infection from implanted electronic pacemakers or too small for an implanted device, say the researchers. "A biologic pacemaker should also be able to adjust to the body’s changing needs, whereas an electronic pacemaker, at least in its simplest form, does not," says Marbán. "Anything that normally makes our heart go pitter-pat doesn’t change the steady rhythm of the electronic pacemaker. Instead, people get tired very quickly."

Two tiny sets of "pacing" cells in the heart normally give the organ its regular beat by stimulating other cells to contract. If these specialized cells stop working or die, an implanted electronic pacemaker can keep the heartbeat going, a fact of life for hundreds of thousands of people.

"We’ve created a biologic pacemaker in the guinea pig, but now the hard work comes," says Marbán. "We need to fine tune it -- develop controlling strategies, find the optimum place to re-engineer the cells in the heart, control the frequency of the new pacemaker. But there is light at the end of the tunnel."

In the vast majority of heart muscle cells, a particular channel maintains a balance of potassium that makes it more difficult for them to "fire," so instead of being able to generate electricity on their own, they must be triggered by pacemaker cells.

The Hopkins scientists figured that altering this potassium balance might allow heart cells to regain the ability to fire without being triggered. Others had discovered a number of years ago that if just three specific building blocks of heart cells’ potassium channel (called the "inward rectifier potassium current") are altered, the potassium balance is disrupted.

The Hopkins scientists attached the gene for the defective channel to a virus, and also tacked on green fluorescent protein so infected cells would be easily identifiable. Virus-infected cells faithfully transcribe genes carried by the virus.

"This potassium channel acts like an anchor, keeping heart muscle cells from developing pacemaker-like abilities," says Marbán. "By blocking the channel, we effectively lifted the anchor, freeing the muscle cells to re-establish abilities they last held in the developing embryo."

Three to four days after injecting the gene-carrying virus into the heart muscle of guinea pigs, Junichiro Miake, Ph.D., then a postdoctoral fellow at Hopkins, saw that heart cells had begun making the defective potassium channel. Even more important, a new, faster, pace-setting impulse was clearly visible on electrocardiograms from the animals.

"When this channel is blocked, heart muscle cells that normally have to wait for stimulation begin to beat on their own," says Marbán. "In many important ways the guinea pig is similar to humans. Its cardiac electrophysiology is very similar, and this channel is as common in human heart muscle as in the guinea pig. We believe the same principles will prevail in humans."

Normally, one set of 1,000 to 3,000 pacemaker cells is found in the right upper chamber, or atrium, of the heart, and one set straddling the junction between the atrium and the lower chamber, or ventricle. Damage to either set of pacemaker cells or the connection between them can require an electronic pacemaker. About 250,000 electronic pacemakers, about the size of a personal digital assistant (PDA), are implanted each year in the U.S.


###

Joanna Downer | EurekAlert!
Further information:
http://www.nature.com/nature
http://www.nhlbi.nih.gov

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>