Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on cause of an AIDS treatment side effect

12.09.2002


Highly Active Antiretroviral Therapy, or HAART, is the standard of care for HIV/AIDS patients and has prolonged the lives of countless persons with the disease. HAART has been associated, however, with the emergence of lipodystrophy syndromes. In this month’s issue of the journal Mitochondrion*, researchers from the National Cancer Institute (NCI), the National Institute of Standards and Technology (NIST), and Purdue University, West Lafayette, Ind., report that protease inhibitors, a component of HAART, can lead to mitochondrial toxicity. The effect, seen in this test tube study, of protease inhibitors on mitochondria could help explain the biology behind lipodystrophy and also could point to possible future therapeutic approaches for the syndrome.



Lipodystrophy is a clinical condition characterized by a poor or uneven distribution of fat cells. This distribution causes large amounts of fat to be stored in inappropriate places, which can lead to lower belly obesity and a buffalo-like hump on the upper back. Lipodystrophy side effects also include diabetes and high levels of cholesterol and triglycerides. There is significant scientific debate about the precise mechanisms and metabolic pathways involved in the development of lipodystrophy.

The clinical features of HAART-associated lipodystrophy are similar to those commonly seen in people with mitochondrial dysfunction. The mitochondrion is the powerhouse of the cell, and interference with its normal processing of proteins and energy production can result in distortion or dysfunction of other cellular processes.


HAART is a combination of potent antiretroviral drugs such as protease inhibitors and nucleoside-analogue reverse transcriptase inhibitors (NRTIs). Researchers have known for many years that NRTIs in HAART cocktail regimens can directly cause mitochondrial toxicity by inhibiting a mitochondrial enzyme called DNA polymerase gamma. However, until now it was unknown whether protease inhibitors had a direct effect on mitochondria, as well, or whether they played a role in mitochondrial toxicity.

"In this study, we have demonstrated that protease inhibitors can directly affect an enzyme called mitochondrial processing protease (MPP), which can lead to mitochondrial dysfunction - possibly contributing to the development of syndromes such as lipodystrophy," said Lauren Wood, M.D., of NCI. While protease inhibitors alone do not necessarily cause lipodystrophy, the combination of direct effects on mitochondria by both protease inhibitors and NRTIs may lead to the condition. Moreover, as a class of drugs, protease inhibitors are highly hydrophobic (water insoluble), and hence may be concentrated in fatty tissues and have a greater impact on mitochondria in those tissues with chronic exposure.

"The protease inhibitors were weak inhibitors of the enzymatic processing system," said Henry Weiner, Ph.D., of Purdue University. "If they were stronger inhibitors it would have likely led to more serious complications in patients." It is not unusual to find that a drug acts on a different target than the one it was designed to affect, which is why there are often side effects from drugs. "This finding that protease inhibitors affect MPP could be useful if one wants to develop inhibitors of MPP for other conditions, such as cancer," said Weiner.

The researchers do not know to what degree MPP inhibition correlates with mitochondrial change or disruption, nor if what they found with isolated mitochondria, in this test tube study, actually occurs in patients using the drug. It is known, however, that both NRTIs and protease inhibitors have direct effects on fat cells, and mitochondrial abnormalities in fat tissue have been described in patients with lipodystrophy.

According to Steven J. Zullo, Ph.D., of NIST (formerly of the National Institute of Mental Health), "Many drugs can adversely affect mitochondria. This study highlights the importance of evaluating the potential short- and long-term effects of drugs on mitochondria before they are recommended for widespread use."

Researchers say that future studies should look at the effect of MPPs on the fatty tissue in patients as opposed to the test tube experiments done for this study. They also recommend that when scientists design new HIV/AIDS drugs, they consider the effects that the drugs might have on mitochondria, and attempt to minimize adverse effects.

NCI Press Office | EurekAlert!
Further information:
http://www.cancer.gov

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>