Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification of chemokines and cytokines offers new hope for inflammatory myopathy patients

10.09.2002


The inflammatory myopathies comprise three different entities: polymyositis, inclusion body myositis and dermatomyositis. People in all age groups can be affected by major muscle weakness and pain, and show evidence of muscle fiber breakdown in the serum. Autoimmune pathogenetic mechanisms have been identified in each inflammatory myopathy, but the antigen(s) recognized by the autoreactive inflammatory cells and the factors eliciting the aberrant immune responses remain unknown. Currently, patients are treated with corticosteroids with variable success rates and at a high cost of side-effects.



The ongoing research is aimed at identifying the factors that guide the trafficking of inflammatory cells from the blood to the inflamed muscle tissue. A new study reports the differential expression of chemokines and their receptors in each inflammatory myopathy. Chemokines represent a family of small-molecular weight cytokines that have an important role in the migration of distinct leukocyte subsets to the sites of inflammation. The chemokines monocyte chemoattractant protein-1 (MCP-1) and stromal derived factor (SDF-1a and SDF-1b) and their receptors are strongly expressed whereas a number of others are undetectable.

Blocking the autoimmune cascade by targeting chemokines or chemokine receptors has given excellent results in animal models of other immune diseases. The present work identifies the candidates for selective immune intervention in patients suffering autoimmune inflammatory myopathies and may well lead to more selective treatment modalities with less side-effects than the currently available drugs.


Previous research by this group had focused on other factors that control recruitment and activation of immune cells, such as cell adhesion molecules and cytokines. Based in part on data that described the role of the cytokine tumor necrosis factor-a (TNF-a) and its receptors in inflammatory myopathy muscle biopsies, preliminary clinical studies with TNF-blocking monoclonal antibodies are now being initiated in several hospitals. "It is very encouraging to see data obtained from clinically oriented research move from the laboratory bench to the clinical treatment phase in just a few years time", said Professor Jan De Bleecker who is the first author of these papers.

Jan DE BLEECKER | alfa

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>