Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Killer’ cells used to combat rare cancer

10.09.2002


Scientists from the University of Edinburgh are using immune cells harvested from blood donors to help fight an unusual cancer which can affect transplant patients. And their findings, published recently in The Lancet show that the therapy has proved effective in a number of cases. The treatment proved successful last year in saving the life of a four-year-old boy from Birmingham, who developed the cancer— post-transplant lympho-proliferative disease— following a liver and bowel transplant.



The technique, which involves boosting the patient’s own immune system to fight cancer without affecting the transplanted organ, can also be adapted to treat other virus infections, or AIDS patients who have developed lymphomas.

Clinical research scientist Dr Tanzina Haque explained: “The Epstein-Barr virus (EBV) is a common virus best known for causing glandular fever, and is carried by about 90% of the population, without a problem. When a patient receives an organ transplant, he or she is given immuno-suppressive drugs to stop the body rejecting the organ, but this also lowers their immunity to infections by removing the body’s ’killer’ cells, the cytotoxic T-lymphocytes. If a transplant patient’s immunity is compromised, EBV can infect cells called B-lymphocytes, causing them to grow in an uncontrolled way and become malignant. The resulting cancer can be fatal in up to 70% of cases.”


Dr Haque said that to reduce doses of immuno-suppressive drugs could cause organ transplant rejection, so the Edinburgh team, headed by Professor Dorothy Crawford and backed by funding from Cancer Research UK, devised a method of removing ‘killer’ cells from screened blood donations and tissue-type matching them to transplant patients. Should any patients develop lymphoma, they can be infused with matched cells from the bank containing more than 100 blood donations.

The technique, known as Cytotoxic T-Lymphocyte (CTL) Therapy, has shown to have no adverse side-effects for patients. Results published in The Lancet show of eight patients in the trial who were suitable for treatment, two died, five made a complete recovery, two did not respond and one showed a partial response. Two further patients died before their tumour response could be evaluated.

Dr Haque said this UK-wide multicentre clinical trial could not have been possible without the collaboration of the Scottish National Blood Transfusion Service, different transplant centers, and the many blood donors who helped by allowing their blood to be used for generating the T-cells.

Linda Menzies | alfa
Further information:
http://www.ed.ac.uk/news/

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>