Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Team Identifies Potential Role of CRP in Development of Atherosclerosis

10.09.2002


Another piece of the complex puzzle of how inflammation is involved in heart attacks and strokes has been discovered by researchers at the University of California, San Diego (UCSD) School of Medicine.


Mi-Kyung Chang, M.D., first author
© UCSD


Joseph Witztum, M.D., and Mi-Kyung Chang, M.D.
© UCSD



Their findings demonstrate that C-reactive protein (CRP) binds to oxidized low density lipoprotein (LDL), implicating the interaction of CRP and oxidized LDL as a potential trigger for the cascade of events leading to atherosclerosis. This form of artery disease is characterized by the buildup of fatty deposits and chronic inflammation along the artery wall, eventually leading to heart attack.

Published in the online edition of Proceedings of the National Academy of Sciences (PNAS) the week of Sept. 9, 2002, the study by the UCSD researchers pinpoints how CRP attaches itself to oxidized LDL, the so-called "bad cholesterol" that accumulates in the artery wall and generates atherosclerotic plaques. LDL is the major cholesterol carrying particles. When they enter the artery wall from the circulation, they are believed to be modified by oxidation. It is this "oxidized LDL" that is thought to be the culprit leading to inflammation and cholesterol accumulation.


"Our study points out that CRP is not merely a marker of future cardiovascular events, as most people believe, but it actually binds to oxidized LDL and apoptotic or dying cells, giving it a potential role in development or modulation of atherosclerosis, as well as in other inflammatory disease," said Mi-Kyung Chang, M.D., an assistant project scientist and the first author of the paper in PNAS.

In the new studies, the UCSD team showed that CRP binds to oxidized LDL through the recognition of phosphocholine, a part of an oxidized molecule on the surface that is exposed when LDL undergoes oxidation.

Noting that there is an accumulation of dead and dying cells (apoptotic cells) in atherosclerotic lesions and that these cells are under increased oxidative stress, the UCSD researchers also determined that CRP binds to these cells in a similar manner as it recognizes oxidized LDL.

CRP is conventionally regarded as a first-line defense of the immune system against invading pathogens and confers protection to humans by removing pathogens. Recently, CRP has been reported as a useful marker for predicting future atherosclerotic cardiovascular events, but the basis for this correlation remains unclear.

Although scientists still do not understand all the steps in the development of atherosclerosis, it is known that oxidized LDL in the artery wall are taken up (engulfed) by macrophages, scavenger cells that have been drawn to the site by oxidized LDL. When they become engorged with the oxidized LDL, the macrophages become "foam cells," the hallmark of atherosclerotic plaques. It is possible that CRP may bind to oxidized LDL and further enhance the uptake into cells.

The paper’s senior author, Joseph Witztum, M.D., professor of medicine, added that cholesterol is still a key player in coronary heart disease. He said that CRP may be working in its "correct role" as part of the immune response to the toxic oxidized LDL and may help promote its clearance.

"If you have low levels of LDL, and thus, low levels of oxidized LDL, then CRP may be of benefit," Witztum said. "However, when there is an overwhelming accumulation of LDL, and thus oxidized LDL, in its attempt to help clear the toxic particle, the CRP may actually make things worse. It may cause more oxidized LDL to be taken up into macrophage scavenger cells, which in turn cause cholesterol accumulation – a sort of ’Trojan horse’."

For the past 20 years, the Witztum lab at UCSD, in collaboration with UCSD professor of medicine Daniel Steinberg, M.D., Ph.D., has pioneered the role of oxidized LDL as a major contributing factor for the development of atherosclerosis. In particular, the Witztum lab has been studying immunological response to oxidized LDL and its impact on development and modulation of atherosclerosis. Recently, the Witztum team found that many mouse antibodies that are specific to oxidized LDL are identical to "T15" type natural antibodies that have been extensively studied for 30 years by immunologists for their recognition of S. pneumoniae, the most common cause of pneumonia. T15 also binds to phosphocholine present on pathogens and provides a protective immune defense against those pathogens.

As both T15 antibody and CRP recognize the same molecule, phosphocholine, Chang reasoned that CRP might bind to oxidized LDL, but not native LDL that does not expose phosphocholine. Indeed, Chang and colleagues showed that CRP does bind to oxidized LDL as well as apoptotic cells through the recognition of phosphocholine. Therefore, CRP is now a novel immune response to oxidized LDL, along with macrophages and T15 antibodies, through the recognition of the same phosphocholine molecule, which is also present on many infectious pathogens.

Studies are now underway to determine whether CRP is protective, or could actually cause harm.

The UCSD research was funded by the National Institutes of Health. In addition to Chang and Witztum, additional authors were Christoph J. Binder, Ph.D., post doctoral fellow, and Michael Torzewski, M.D., visiting scholar, UCSD Department of Medicine.

University of California - San D | EurekAlert!
Further information:
http://health.ucsd.edu/news/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>