Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Team Identifies Potential Role of CRP in Development of Atherosclerosis

10.09.2002


Another piece of the complex puzzle of how inflammation is involved in heart attacks and strokes has been discovered by researchers at the University of California, San Diego (UCSD) School of Medicine.


Mi-Kyung Chang, M.D., first author
© UCSD


Joseph Witztum, M.D., and Mi-Kyung Chang, M.D.
© UCSD



Their findings demonstrate that C-reactive protein (CRP) binds to oxidized low density lipoprotein (LDL), implicating the interaction of CRP and oxidized LDL as a potential trigger for the cascade of events leading to atherosclerosis. This form of artery disease is characterized by the buildup of fatty deposits and chronic inflammation along the artery wall, eventually leading to heart attack.

Published in the online edition of Proceedings of the National Academy of Sciences (PNAS) the week of Sept. 9, 2002, the study by the UCSD researchers pinpoints how CRP attaches itself to oxidized LDL, the so-called "bad cholesterol" that accumulates in the artery wall and generates atherosclerotic plaques. LDL is the major cholesterol carrying particles. When they enter the artery wall from the circulation, they are believed to be modified by oxidation. It is this "oxidized LDL" that is thought to be the culprit leading to inflammation and cholesterol accumulation.


"Our study points out that CRP is not merely a marker of future cardiovascular events, as most people believe, but it actually binds to oxidized LDL and apoptotic or dying cells, giving it a potential role in development or modulation of atherosclerosis, as well as in other inflammatory disease," said Mi-Kyung Chang, M.D., an assistant project scientist and the first author of the paper in PNAS.

In the new studies, the UCSD team showed that CRP binds to oxidized LDL through the recognition of phosphocholine, a part of an oxidized molecule on the surface that is exposed when LDL undergoes oxidation.

Noting that there is an accumulation of dead and dying cells (apoptotic cells) in atherosclerotic lesions and that these cells are under increased oxidative stress, the UCSD researchers also determined that CRP binds to these cells in a similar manner as it recognizes oxidized LDL.

CRP is conventionally regarded as a first-line defense of the immune system against invading pathogens and confers protection to humans by removing pathogens. Recently, CRP has been reported as a useful marker for predicting future atherosclerotic cardiovascular events, but the basis for this correlation remains unclear.

Although scientists still do not understand all the steps in the development of atherosclerosis, it is known that oxidized LDL in the artery wall are taken up (engulfed) by macrophages, scavenger cells that have been drawn to the site by oxidized LDL. When they become engorged with the oxidized LDL, the macrophages become "foam cells," the hallmark of atherosclerotic plaques. It is possible that CRP may bind to oxidized LDL and further enhance the uptake into cells.

The paper’s senior author, Joseph Witztum, M.D., professor of medicine, added that cholesterol is still a key player in coronary heart disease. He said that CRP may be working in its "correct role" as part of the immune response to the toxic oxidized LDL and may help promote its clearance.

"If you have low levels of LDL, and thus, low levels of oxidized LDL, then CRP may be of benefit," Witztum said. "However, when there is an overwhelming accumulation of LDL, and thus oxidized LDL, in its attempt to help clear the toxic particle, the CRP may actually make things worse. It may cause more oxidized LDL to be taken up into macrophage scavenger cells, which in turn cause cholesterol accumulation – a sort of ’Trojan horse’."

For the past 20 years, the Witztum lab at UCSD, in collaboration with UCSD professor of medicine Daniel Steinberg, M.D., Ph.D., has pioneered the role of oxidized LDL as a major contributing factor for the development of atherosclerosis. In particular, the Witztum lab has been studying immunological response to oxidized LDL and its impact on development and modulation of atherosclerosis. Recently, the Witztum team found that many mouse antibodies that are specific to oxidized LDL are identical to "T15" type natural antibodies that have been extensively studied for 30 years by immunologists for their recognition of S. pneumoniae, the most common cause of pneumonia. T15 also binds to phosphocholine present on pathogens and provides a protective immune defense against those pathogens.

As both T15 antibody and CRP recognize the same molecule, phosphocholine, Chang reasoned that CRP might bind to oxidized LDL, but not native LDL that does not expose phosphocholine. Indeed, Chang and colleagues showed that CRP does bind to oxidized LDL as well as apoptotic cells through the recognition of phosphocholine. Therefore, CRP is now a novel immune response to oxidized LDL, along with macrophages and T15 antibodies, through the recognition of the same phosphocholine molecule, which is also present on many infectious pathogens.

Studies are now underway to determine whether CRP is protective, or could actually cause harm.

The UCSD research was funded by the National Institutes of Health. In addition to Chang and Witztum, additional authors were Christoph J. Binder, Ph.D., post doctoral fellow, and Michael Torzewski, M.D., visiting scholar, UCSD Department of Medicine.

University of California - San D | EurekAlert!
Further information:
http://health.ucsd.edu/news/

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water cooling for the Earth's crust

23.11.2017 | Earth Sciences

Nano-watch has steady hands

23.11.2017 | Physics and Astronomy

Batteries with better performance and improved safety

23.11.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>