Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s invention connects brain functioning to limb control

10.09.2002


Pilot project for stroke victims to begin this fall



A Queen’s neuroscientist’s invention to help understand the role of the brain in arm and leg movement will dramatically improve the assessment and rehabilitation of stroke and spinal cord victims. It will also help lay the groundwork for development of neural prostheses that can re-activate paralyzed limbs.

Dr. Stephen Scott’s unique mathematical model, combined with his new experimental device, KINARM (Kinesiological Instrument for Normal and Altered Reaching Movement), enables researchers for the first time to objectively quantify and manipulate the mechanics of limb movement in multi-joint motor tasks. This device has already generated several new observations on how the brain coordinates limb movements.


In a pilot project to begin this fall at St. Mary’s by the Lake Hospital, the device will be used to quantify motor function of stroke patients. Motor patterns will be examined first for a number of simple tasks while subjects maintain fixed arm postures, then for more sophisticated tasks where they learn to make reaching movements while the robot applies complex novel loads to assess their ability to learn new motor skills. The long-term goal is to identify which tasks patients can and cannot perform, and to create "fingerprints" to aid in the diagnosis and classification of motor dysfunctions, as well as to guide future directions for therapy.

"We needed a different experimental paradigm to understand how neurons in the brain are involved in controlling movement," says Dr. Scott. "Once you’ve built the technology, the rest becomes much easier." That’s why he spent two years creating the recently-patented robotic device, KINARM, which provides quantitative, objective data required to assess performance and identify dysfunctions.

To be used at Western, University of Chicago
The team has also installed a KINARM system at the University of Western Ontario, and is currently developing one for the University of Chicago. "We hope to give other researchers an opportunity to use this technology in answering questions about limb movement that couldn’t be posed before," says Dr. Scott.

Patented in 2000 through Queen’s technology transfer office, PARTEQ Innovations, KINARM has hinge joints aligned with a person’s shoulder and elbow allowing horizontal arm movements, and a computer projection system that provides virtual targets in the plane of the arm. Each joint can be manipulated independently, with different loads added selectively. This allows the device to independently manipulate the mechanics of the shoulder and elbow joints during multi-joint tasks.

"Now that we’re learning how the brain organizes information related to movement and motor control, we can take that information into the clinic and start to look at different patient populations to develop diagnostic tools and provide quantitative information on what the specific deficits are," says Dr. Scott. "That helps to both identify sub-groups of different diseases or deficits, and to guide rehabilitation."

Nancy Dorrance | EurekAlert!
Further information:
http://www.queensu.ca/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>