Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientist explores caffeine-signaling activity in brain function

29.08.2002


Every morning millions of Americans reach for the world’s most popular drug to help them start their day.



"That drug is caffeine," said Dr. James Bibb, assistant professor of psychiatry at UT Southwestern Medical Center at Dallas. Bibb is one of the authors of a new report explaining how caffeine exerts its stimulatory effect by altering the biochemistry of the brain. The findings appear in an August issue of Nature.

"Caffeine is the most frequently self-administered drug in recreational use worldwide today," Bibb said. "And yet we know little about how caffeine works in the brain, whether with the kick from a double espresso or small jolts from tea or cola. We do know it is rewarding, can enhance cognition and performance, and induce dependence at the same time."


Bibb said most people would never consider that the effects of their morning coffee would have any similarities to those of cocaine, long known to be a powerful and dangerous recreational drug. But research is showing that the two stimulants similarly alter a specific signaling activity within the brain.

The researchers involved in the Nature paper used genetically altered mice lacking DARPP-32, a protein known to play a role in drug addiction, to explore questions about caffeine’s stimulant effects. Normal mice given a 7.5 milligram/kilogram dose of caffeine showed a dramatic increase in long-range (locomotion) and short-range (motility) movements for as long as 100 minutes. This amount of caffeine is the equivalent of about three cups of coffee for a person weighing 160 pounds. When scientists gave the mice lacking DARPP-32 the same dose, it had little effect. Only by doubling the dose to 15 mg/kg were researchers able to overcome the knockout effect of gene deletion.

Bibb said these results were similar to those of his previous studies that explored the same biochemical pathways activated by cocaine.

Bibb explained that it has been known for some time that caffeine owes much of its stimulant action to its ability to block receptors, such as those for adenosine, in the brain. Adenosine, one of the four building blocks of DNA and an important signaling molecule in the brain, forms the backbone of the energy-storage molecule ATP. ATP helps maintain equilibrium, or balance, between its energy use and electrical activity throughout the cells, sending signals along specific brain pathways.

Bibb is a former Rockefeller University scientist who is continuing his research at UT Southwestern on the processes in the brain that control addiction and other neurological and psychiatric disorders. Much of his research involves identifying processes that regulate brain biochemistry and determining how these are triggered by specific drugs of abuse or neuropsychiatric diseases. Some of his early findings on these biochemical pathways and how cocaine affects them have appeared in two earlier reports in Nature.

Bibb said insights into the mechanisms of both cocaine and caffeine on the brain have led him to investigate the processes in the brain that control sleep. He is currently working on new sleep studies with other scientists, including Dr. Robert Greene, vice chairman of psychiatry for VA services at UT Southwestern.

"We find that in the brain many processes are related, and it is well-known that caffeine can induce insomnia and that adenosine can induce sleep. By studying sleep we may also learn more about drug addiction and other disorders," Bibb said.

Ann Harrell | EurekAlert!
Further information:
http://lists.utsouthwestern.edu/mailman/listinfo/utswnews

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>