Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientist explores caffeine-signaling activity in brain function

29.08.2002


Every morning millions of Americans reach for the world’s most popular drug to help them start their day.



"That drug is caffeine," said Dr. James Bibb, assistant professor of psychiatry at UT Southwestern Medical Center at Dallas. Bibb is one of the authors of a new report explaining how caffeine exerts its stimulatory effect by altering the biochemistry of the brain. The findings appear in an August issue of Nature.

"Caffeine is the most frequently self-administered drug in recreational use worldwide today," Bibb said. "And yet we know little about how caffeine works in the brain, whether with the kick from a double espresso or small jolts from tea or cola. We do know it is rewarding, can enhance cognition and performance, and induce dependence at the same time."


Bibb said most people would never consider that the effects of their morning coffee would have any similarities to those of cocaine, long known to be a powerful and dangerous recreational drug. But research is showing that the two stimulants similarly alter a specific signaling activity within the brain.

The researchers involved in the Nature paper used genetically altered mice lacking DARPP-32, a protein known to play a role in drug addiction, to explore questions about caffeine’s stimulant effects. Normal mice given a 7.5 milligram/kilogram dose of caffeine showed a dramatic increase in long-range (locomotion) and short-range (motility) movements for as long as 100 minutes. This amount of caffeine is the equivalent of about three cups of coffee for a person weighing 160 pounds. When scientists gave the mice lacking DARPP-32 the same dose, it had little effect. Only by doubling the dose to 15 mg/kg were researchers able to overcome the knockout effect of gene deletion.

Bibb said these results were similar to those of his previous studies that explored the same biochemical pathways activated by cocaine.

Bibb explained that it has been known for some time that caffeine owes much of its stimulant action to its ability to block receptors, such as those for adenosine, in the brain. Adenosine, one of the four building blocks of DNA and an important signaling molecule in the brain, forms the backbone of the energy-storage molecule ATP. ATP helps maintain equilibrium, or balance, between its energy use and electrical activity throughout the cells, sending signals along specific brain pathways.

Bibb is a former Rockefeller University scientist who is continuing his research at UT Southwestern on the processes in the brain that control addiction and other neurological and psychiatric disorders. Much of his research involves identifying processes that regulate brain biochemistry and determining how these are triggered by specific drugs of abuse or neuropsychiatric diseases. Some of his early findings on these biochemical pathways and how cocaine affects them have appeared in two earlier reports in Nature.

Bibb said insights into the mechanisms of both cocaine and caffeine on the brain have led him to investigate the processes in the brain that control sleep. He is currently working on new sleep studies with other scientists, including Dr. Robert Greene, vice chairman of psychiatry for VA services at UT Southwestern.

"We find that in the brain many processes are related, and it is well-known that caffeine can induce insomnia and that adenosine can induce sleep. By studying sleep we may also learn more about drug addiction and other disorders," Bibb said.

Ann Harrell | EurekAlert!
Further information:
http://lists.utsouthwestern.edu/mailman/listinfo/utswnews

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>