Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate and cholera: an increasingly important link

28.08.2002


The link between climate and cholera, a serious health problem in many parts of the world, has become stronger in recent decades, say researchers from the University of Michigan, the University of Barcelona and the International Center for Diarrhoeal Disease Research in Bangladesh.



Their research will be published in the online version of the Proceedings of the National Academy of Sciences this week.

In a previous study published in the journal Science, the researchers found evidence that El Nino-Southern Oscillation (ENSO), a major source of climate variability from year to year, influences cycles of cholera. In that work, they looked only at climate and disease data from Bangladesh for the past two decades. In the new research, they compared those results with data from Bangladesh for the periods 1893-1920 and 1920-1940 to see whether the coupling between climate variability and cholera cycles has become stronger in recent decades. Their examination of the data, which relied on a suite of techniques called time series analysis, suggests that it has.


“What is new in this work is not showing that ENSO plays a role in the variability of cholera, but that the role of ENSO has intensified,” says Mercedes Pascual, an assistant professor in the department of Ecology and Evolutionary Biology at the University of Michigan. In addition, the link is strongest following ENSO events, with cholera increasing after warm events and decreasing after cold events. In the years between events, the climate-cholera connection breaks down.

Scientists who study climate change predict that ENSO will become stronger and more variable in coming years under a global warming scenario, so understanding how its connection to human disease changes will be increasingly important, says Pascual.

Cholera, an intestinal infection with symptoms that may include diarrhea, vomiting and leg cramps, is caused by the bacterium Vibrio cholerae. People usually get the disease by eating or drinking contaminated food or water.

The greater role of ENSO in cholera dynamics probably reflects known changes in ENSO itself, the researchers believe. Since the late 1970s, there has been a tendency toward warmer ENSO events, in conjunction with global warming. Because the disease-causing bacterium lives in brackish water and thrives in warm temperatures, it may be particularly sensitive to climate patterns. People also may be more likely to come in contact with contaminated water in warmer weather.

Other diseases, such as malaria and dengue, may be similarly affected by climate variability, says Pascual. But because other factors, such as patterns of immunity, also lead to cycles in disease dynamics, Pascual and her colleagues are working on methods to sort out the relative roles of climate and intrinsic factors such as temporary immunity.


Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853
E-mail: rossflan@umich.edu

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu/~newsinfo

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>