Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate and cholera: an increasingly important link

28.08.2002


The link between climate and cholera, a serious health problem in many parts of the world, has become stronger in recent decades, say researchers from the University of Michigan, the University of Barcelona and the International Center for Diarrhoeal Disease Research in Bangladesh.



Their research will be published in the online version of the Proceedings of the National Academy of Sciences this week.

In a previous study published in the journal Science, the researchers found evidence that El Nino-Southern Oscillation (ENSO), a major source of climate variability from year to year, influences cycles of cholera. In that work, they looked only at climate and disease data from Bangladesh for the past two decades. In the new research, they compared those results with data from Bangladesh for the periods 1893-1920 and 1920-1940 to see whether the coupling between climate variability and cholera cycles has become stronger in recent decades. Their examination of the data, which relied on a suite of techniques called time series analysis, suggests that it has.


“What is new in this work is not showing that ENSO plays a role in the variability of cholera, but that the role of ENSO has intensified,” says Mercedes Pascual, an assistant professor in the department of Ecology and Evolutionary Biology at the University of Michigan. In addition, the link is strongest following ENSO events, with cholera increasing after warm events and decreasing after cold events. In the years between events, the climate-cholera connection breaks down.

Scientists who study climate change predict that ENSO will become stronger and more variable in coming years under a global warming scenario, so understanding how its connection to human disease changes will be increasingly important, says Pascual.

Cholera, an intestinal infection with symptoms that may include diarrhea, vomiting and leg cramps, is caused by the bacterium Vibrio cholerae. People usually get the disease by eating or drinking contaminated food or water.

The greater role of ENSO in cholera dynamics probably reflects known changes in ENSO itself, the researchers believe. Since the late 1970s, there has been a tendency toward warmer ENSO events, in conjunction with global warming. Because the disease-causing bacterium lives in brackish water and thrives in warm temperatures, it may be particularly sensitive to climate patterns. People also may be more likely to come in contact with contaminated water in warmer weather.

Other diseases, such as malaria and dengue, may be similarly affected by climate variability, says Pascual. But because other factors, such as patterns of immunity, also lead to cycles in disease dynamics, Pascual and her colleagues are working on methods to sort out the relative roles of climate and intrinsic factors such as temporary immunity.


Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853
E-mail: rossflan@umich.edu

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu/~newsinfo

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>