Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining Rb2 gene with radiation therapy quickens tumor cell death, Temple researchers find

27.08.2002


Combining the tumor suppressing Rb2 gene with doses of gamma radiation speeds up the ability of tumor cells to die, according to a study by researchers at Temple University’s College of Science and Technology.


Photo Credit: Joseph V. Labolito
Photo Caption
Antonio Giordano, M.D., Ph.D., an internationally recognized researcher in the genetics of cancer and gene therapy, joined the faculty of Temple University’s College of Science and Technology (CST) on March



The results of the study, "pRb2/p130 promotes radiation-induced death in glioblastoma cell line HJC12 by p73 upregulation and Bcl-2 downregulation," appear in the August 29 issue of Oncogene (Vol. 21, Issue 38).

In the study, which was started at Thomas Jefferson University and completed at Temple’s Sbarro Institute for Cancer Research and Molecular Medicine, the researchers found that when they treated tumor cells in which the Rb2 gene has been transplanted with gamma radiation, there was an increase of almost 50 percent in the ability of the cells to destroy themselves.


"One of the characteristics of the tumor cells is, at a certain point, the ability of the cell to program its own death, which is called apoptosis," says Antonio Giordano, Ph.D., M.D., head of the Sbarro Institute and one of the study’s lead researchers. "In this case, we wanted to know if the introduction of the Rb2 gene into the tumor cell was creating apoptosis."

Giordano says that in order to kill tumor cells through apoptosis, the cells can be treated with gamma radiation, but that this therapy doesn’t always have the desired effect.

In their study, the researchers transplanted a correct copy of the Rb2 into an aggressive brain tumor known as a glioblastoma using a vector that is sensitive to the drug tetracycline.

"When you have the presence of tetracycline, the Rb2 gene is in a silent state," says Giordano. "When you remove the tetracycline, you enhance the Rb2 gene expression and the tumor cells die.’

As part of the study, the researchers treated the tumor cells in which they had transplanted the Rb2 gene with gamma radiation. "When we looked at the possible synergistic role between gamma radiation and the Rb2 gene therapy, we saw that when we combine enhanced Rb2 expression with the gamma radiation treatment, there was an increase of almost 50 percent in the ability of the cells to die from apoptosis," says Giordano, a professor of biology at Temple (http://www.temple.edu/news_media/hkg696.html), who discovered the Rb2 gene while working as a researcher at Temple’s Fels Institute for Cancer Research and Molecular Biology in the early 1990s. "So the gamma radiation at this point really helped in promoting quicker cell death in the cancer cells when it was combined with gene therapy."

Giordano adds that the researchers concluded that the Rb2 introduction into gamma radiation-induced cells was also associated with the up- and down-regulation of other molecules involved in apoptosis, namely Bcl-2, an anti-apoptic factor, and p73, a tumor suppressor related to the p53.

"Rb2/130 at this point is known to inhibit tumor progression by interfering with the cell cycle and, as previously demonstrated, is involved in angiogenesis," says Giordano. "But at this point, it is also able to control another important process in cancer and that’s apoptosis.

"With all of the data we’ve produced so far, clearly, we’ve built another step in demonstrating that Rb2/p130 indeed is a guardian of the genome and able to participate in all key normal cell processes," he adds, "and therefore, it is becoming an essential target both for diagnosis and therapy."

The study, which was led by Giordano and Dr. Pier Paolo Claudio, associate professor of biology at Temple and a member of the Sbarro Institute, was an international collaborative effort, and included the Sbarro Institute, Temple’s Center for Neurovirology and Cancer Biology, Thomas Jefferson University, the University of Naples and the University of Rome in Italy. The National Institutes of Health and the Sbarro Health Research Organization funded the research.

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>