Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining Rb2 gene with radiation therapy quickens tumor cell death, Temple researchers find

27.08.2002


Combining the tumor suppressing Rb2 gene with doses of gamma radiation speeds up the ability of tumor cells to die, according to a study by researchers at Temple University’s College of Science and Technology.


Photo Credit: Joseph V. Labolito
Photo Caption
Antonio Giordano, M.D., Ph.D., an internationally recognized researcher in the genetics of cancer and gene therapy, joined the faculty of Temple University’s College of Science and Technology (CST) on March



The results of the study, "pRb2/p130 promotes radiation-induced death in glioblastoma cell line HJC12 by p73 upregulation and Bcl-2 downregulation," appear in the August 29 issue of Oncogene (Vol. 21, Issue 38).

In the study, which was started at Thomas Jefferson University and completed at Temple’s Sbarro Institute for Cancer Research and Molecular Medicine, the researchers found that when they treated tumor cells in which the Rb2 gene has been transplanted with gamma radiation, there was an increase of almost 50 percent in the ability of the cells to destroy themselves.


"One of the characteristics of the tumor cells is, at a certain point, the ability of the cell to program its own death, which is called apoptosis," says Antonio Giordano, Ph.D., M.D., head of the Sbarro Institute and one of the study’s lead researchers. "In this case, we wanted to know if the introduction of the Rb2 gene into the tumor cell was creating apoptosis."

Giordano says that in order to kill tumor cells through apoptosis, the cells can be treated with gamma radiation, but that this therapy doesn’t always have the desired effect.

In their study, the researchers transplanted a correct copy of the Rb2 into an aggressive brain tumor known as a glioblastoma using a vector that is sensitive to the drug tetracycline.

"When you have the presence of tetracycline, the Rb2 gene is in a silent state," says Giordano. "When you remove the tetracycline, you enhance the Rb2 gene expression and the tumor cells die.’

As part of the study, the researchers treated the tumor cells in which they had transplanted the Rb2 gene with gamma radiation. "When we looked at the possible synergistic role between gamma radiation and the Rb2 gene therapy, we saw that when we combine enhanced Rb2 expression with the gamma radiation treatment, there was an increase of almost 50 percent in the ability of the cells to die from apoptosis," says Giordano, a professor of biology at Temple (http://www.temple.edu/news_media/hkg696.html), who discovered the Rb2 gene while working as a researcher at Temple’s Fels Institute for Cancer Research and Molecular Biology in the early 1990s. "So the gamma radiation at this point really helped in promoting quicker cell death in the cancer cells when it was combined with gene therapy."

Giordano adds that the researchers concluded that the Rb2 introduction into gamma radiation-induced cells was also associated with the up- and down-regulation of other molecules involved in apoptosis, namely Bcl-2, an anti-apoptic factor, and p73, a tumor suppressor related to the p53.

"Rb2/130 at this point is known to inhibit tumor progression by interfering with the cell cycle and, as previously demonstrated, is involved in angiogenesis," says Giordano. "But at this point, it is also able to control another important process in cancer and that’s apoptosis.

"With all of the data we’ve produced so far, clearly, we’ve built another step in demonstrating that Rb2/p130 indeed is a guardian of the genome and able to participate in all key normal cell processes," he adds, "and therefore, it is becoming an essential target both for diagnosis and therapy."

The study, which was led by Giordano and Dr. Pier Paolo Claudio, associate professor of biology at Temple and a member of the Sbarro Institute, was an international collaborative effort, and included the Sbarro Institute, Temple’s Center for Neurovirology and Cancer Biology, Thomas Jefferson University, the University of Naples and the University of Rome in Italy. The National Institutes of Health and the Sbarro Health Research Organization funded the research.

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>