Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining Rb2 gene with radiation therapy quickens tumor cell death, Temple researchers find

27.08.2002


Combining the tumor suppressing Rb2 gene with doses of gamma radiation speeds up the ability of tumor cells to die, according to a study by researchers at Temple University’s College of Science and Technology.


Photo Credit: Joseph V. Labolito
Photo Caption
Antonio Giordano, M.D., Ph.D., an internationally recognized researcher in the genetics of cancer and gene therapy, joined the faculty of Temple University’s College of Science and Technology (CST) on March



The results of the study, "pRb2/p130 promotes radiation-induced death in glioblastoma cell line HJC12 by p73 upregulation and Bcl-2 downregulation," appear in the August 29 issue of Oncogene (Vol. 21, Issue 38).

In the study, which was started at Thomas Jefferson University and completed at Temple’s Sbarro Institute for Cancer Research and Molecular Medicine, the researchers found that when they treated tumor cells in which the Rb2 gene has been transplanted with gamma radiation, there was an increase of almost 50 percent in the ability of the cells to destroy themselves.


"One of the characteristics of the tumor cells is, at a certain point, the ability of the cell to program its own death, which is called apoptosis," says Antonio Giordano, Ph.D., M.D., head of the Sbarro Institute and one of the study’s lead researchers. "In this case, we wanted to know if the introduction of the Rb2 gene into the tumor cell was creating apoptosis."

Giordano says that in order to kill tumor cells through apoptosis, the cells can be treated with gamma radiation, but that this therapy doesn’t always have the desired effect.

In their study, the researchers transplanted a correct copy of the Rb2 into an aggressive brain tumor known as a glioblastoma using a vector that is sensitive to the drug tetracycline.

"When you have the presence of tetracycline, the Rb2 gene is in a silent state," says Giordano. "When you remove the tetracycline, you enhance the Rb2 gene expression and the tumor cells die.’

As part of the study, the researchers treated the tumor cells in which they had transplanted the Rb2 gene with gamma radiation. "When we looked at the possible synergistic role between gamma radiation and the Rb2 gene therapy, we saw that when we combine enhanced Rb2 expression with the gamma radiation treatment, there was an increase of almost 50 percent in the ability of the cells to die from apoptosis," says Giordano, a professor of biology at Temple (http://www.temple.edu/news_media/hkg696.html), who discovered the Rb2 gene while working as a researcher at Temple’s Fels Institute for Cancer Research and Molecular Biology in the early 1990s. "So the gamma radiation at this point really helped in promoting quicker cell death in the cancer cells when it was combined with gene therapy."

Giordano adds that the researchers concluded that the Rb2 introduction into gamma radiation-induced cells was also associated with the up- and down-regulation of other molecules involved in apoptosis, namely Bcl-2, an anti-apoptic factor, and p73, a tumor suppressor related to the p53.

"Rb2/130 at this point is known to inhibit tumor progression by interfering with the cell cycle and, as previously demonstrated, is involved in angiogenesis," says Giordano. "But at this point, it is also able to control another important process in cancer and that’s apoptosis.

"With all of the data we’ve produced so far, clearly, we’ve built another step in demonstrating that Rb2/p130 indeed is a guardian of the genome and able to participate in all key normal cell processes," he adds, "and therefore, it is becoming an essential target both for diagnosis and therapy."

The study, which was led by Giordano and Dr. Pier Paolo Claudio, associate professor of biology at Temple and a member of the Sbarro Institute, was an international collaborative effort, and included the Sbarro Institute, Temple’s Center for Neurovirology and Cancer Biology, Thomas Jefferson University, the University of Naples and the University of Rome in Italy. The National Institutes of Health and the Sbarro Health Research Organization funded the research.

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>