Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of mice and men: Deaf mouse leads scientists to new human hearing loss gene

26.08.2002


In a powerful demonstration of how animal research can help humans, a pair of scientific teams is reporting the discovery of defects in a deafness gene in mice that led to the identification of similar genetic defects in people with hearing loss.

The findings, published in two new papers, may eventually lead to a screening test and therapy for families affected by one type of inherited hearing loss.

The discoveries also bring scientists closer to understanding the intricate choreography of genes and proteins involved in the normal development of human hearing -- and the tiny missteps that can destroy hearing even before a baby is born.



The discovery of the human deafness gene, called TMIE, is reported in the September issue of the American Journal of Human Genetics. The finding relied on the discovery of a mouse gene, Tmie, first reported in the August issue of Human Molecular Genetics.

The mouse studies were conducted at the Kresge Hearing Research Institute, part of the University of Michigan Health System, using two deaf strains of mice from the Jackson Laboratory in Maine. One mouse strain, called ’spinner’ because their inner ear problems cause them to spin madly in circles, was found in the 1960s. The other strain used in the study was identified more recently.

At the U-M, senior author David Kohrman, Ph.D., and his colleagues have worked for three years to pinpoint the Tmie gene, guided by earlier studies on spinner mice that gave them a general location for searching.

Once they found the gene, and the mutations in it that caused deafness in the two strains of mice, they explored how those mutations affect the structure and function of the inner ear, leading to deafness. They think the mutations alter the tiny hair-like stereocilia that coat the "hair cells" of the inner ear and are crucial to hearing.

Recently, Kohrman shared this knowledge with colleagues at the University of Iowa and at the National Institute on Deafness and Other Communication Disorders, of the National Institutes of Health.

For years, the Iowa and NIH teams have studied several Indian and Pakistani families with a history of inherited hearing loss. They had found the general location of the gene involved in the families’ hearing problems, but specific information from the U-M mouse study helped them zero in on it.

Using DNA segments made by Kohrman’s team to "search" for similar stretches of DNA in tissue samples from the families, the groups at Iowa and NIH checked for defects in the human TMIE gene. They found three mutations in a day and a half, then found two more -- each causing hearing loss in one of five different families.

"This shows how useful mice are as models for the human ear, and how powerful gene mapping and a classical genetic approach can be," says Kohrman, an assistant professor of otolaryngology at the U-M Medical School. "This gives us an inroad to open up other areas of the genome involved in deafness."

The Iowa-NIH team agrees. "We still have much to learn about TMIE, but it’s clear that it plays a critical role in the auditory system -- one that has stayed much the same since mouse ancestors and human ancestors branched off the evolutionary tree," says Edward R. Wilcox, Ph.D., a researcher in the NIDCD Laboratory of Molecular Genetics and senior author of the human gene paper.

"It’s a really exciting time for deafness research, and this is another advance in putting together a piece of the whole puzzle," says Richard J.H. Smith, M.D., the Sterba Hearing Research Professor at the University of Iowa. "This shows what can happen when labs work together, because having the mouse gene definitely sped things up for those of us searching for the human gene."

Kohrman credits the public mouse genome database for speeding his team’s research. Both TMIE and Tmie are located on a stretch of DNA that is similar in humans and mice -- a stretch that has been sequenced by both the mouse and human genome projects.

The ready availability of DNA sequences is making it easier for scientists to get to the bottom of inherited deafness, which accounts for about half of all hearing loss in people under 30. Scientists estimate that half of all inherited hearing loss cases are due to mutations in a single gene called connexin 26, found in 1997.

But researchers are still piecing together the other genes involved in the rest of the genetic deafness cases. The new TMIE gene will be added to a list of more than 25 others.

No matter how many people actually carry TMIE mutations, the finding in both the human families and the mice will help researchers continue to study the impact of genetics on hearing. It’s already allowing them to test ideas for screening for, and even correcting, mutations.

Now, Kohrman and his team are working to develop a transgenic mouse that carries a normal Tmie gene, so they can test approaches for turning the gene on and off. They also hope to build a virus-based "vector" that will allow them to insert a normal Tmie gene into mice that carry a mutated version of the gene, in an attempt to correct the problem.

Kohrman’s colleague Yehoash Raphael, Ph.D., M.Sc., who directs Kresge’s Otopathology Laboratory, will continue to aid the reseach using an electron microscope to see the alterations that Tmie mutations cause in the stereocilia of the inner ear’s hair cells. By studying the cells at different stages of mouse development, and comparing their growth with the activation of the Tmie gene that occurs at the same time, they may learn exactly when and how Tmie works.

"Sensory cells are a small proportion of all the cells in the ear, but they’re some of the most important," says Kohrman. "Anything we can do to find out how they develop will be significant."

Besides Kohrman and Raphael, the mouse gene team includes U-M senior associate research scientist David F. Dolan, Ph.D.; U-M research associates Lisa Beyer, Gary Dootz and lead author Kristina Mitchem, M.S.; former U-M research assistant Ellen Hibbard; and Ken Bosom and Kenneth R. Johnson of the Jackson Laboratory.

Kara Gavin | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>