Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of mice and men: Deaf mouse leads scientists to new human hearing loss gene

26.08.2002


In a powerful demonstration of how animal research can help humans, a pair of scientific teams is reporting the discovery of defects in a deafness gene in mice that led to the identification of similar genetic defects in people with hearing loss.

The findings, published in two new papers, may eventually lead to a screening test and therapy for families affected by one type of inherited hearing loss.

The discoveries also bring scientists closer to understanding the intricate choreography of genes and proteins involved in the normal development of human hearing -- and the tiny missteps that can destroy hearing even before a baby is born.



The discovery of the human deafness gene, called TMIE, is reported in the September issue of the American Journal of Human Genetics. The finding relied on the discovery of a mouse gene, Tmie, first reported in the August issue of Human Molecular Genetics.

The mouse studies were conducted at the Kresge Hearing Research Institute, part of the University of Michigan Health System, using two deaf strains of mice from the Jackson Laboratory in Maine. One mouse strain, called ’spinner’ because their inner ear problems cause them to spin madly in circles, was found in the 1960s. The other strain used in the study was identified more recently.

At the U-M, senior author David Kohrman, Ph.D., and his colleagues have worked for three years to pinpoint the Tmie gene, guided by earlier studies on spinner mice that gave them a general location for searching.

Once they found the gene, and the mutations in it that caused deafness in the two strains of mice, they explored how those mutations affect the structure and function of the inner ear, leading to deafness. They think the mutations alter the tiny hair-like stereocilia that coat the "hair cells" of the inner ear and are crucial to hearing.

Recently, Kohrman shared this knowledge with colleagues at the University of Iowa and at the National Institute on Deafness and Other Communication Disorders, of the National Institutes of Health.

For years, the Iowa and NIH teams have studied several Indian and Pakistani families with a history of inherited hearing loss. They had found the general location of the gene involved in the families’ hearing problems, but specific information from the U-M mouse study helped them zero in on it.

Using DNA segments made by Kohrman’s team to "search" for similar stretches of DNA in tissue samples from the families, the groups at Iowa and NIH checked for defects in the human TMIE gene. They found three mutations in a day and a half, then found two more -- each causing hearing loss in one of five different families.

"This shows how useful mice are as models for the human ear, and how powerful gene mapping and a classical genetic approach can be," says Kohrman, an assistant professor of otolaryngology at the U-M Medical School. "This gives us an inroad to open up other areas of the genome involved in deafness."

The Iowa-NIH team agrees. "We still have much to learn about TMIE, but it’s clear that it plays a critical role in the auditory system -- one that has stayed much the same since mouse ancestors and human ancestors branched off the evolutionary tree," says Edward R. Wilcox, Ph.D., a researcher in the NIDCD Laboratory of Molecular Genetics and senior author of the human gene paper.

"It’s a really exciting time for deafness research, and this is another advance in putting together a piece of the whole puzzle," says Richard J.H. Smith, M.D., the Sterba Hearing Research Professor at the University of Iowa. "This shows what can happen when labs work together, because having the mouse gene definitely sped things up for those of us searching for the human gene."

Kohrman credits the public mouse genome database for speeding his team’s research. Both TMIE and Tmie are located on a stretch of DNA that is similar in humans and mice -- a stretch that has been sequenced by both the mouse and human genome projects.

The ready availability of DNA sequences is making it easier for scientists to get to the bottom of inherited deafness, which accounts for about half of all hearing loss in people under 30. Scientists estimate that half of all inherited hearing loss cases are due to mutations in a single gene called connexin 26, found in 1997.

But researchers are still piecing together the other genes involved in the rest of the genetic deafness cases. The new TMIE gene will be added to a list of more than 25 others.

No matter how many people actually carry TMIE mutations, the finding in both the human families and the mice will help researchers continue to study the impact of genetics on hearing. It’s already allowing them to test ideas for screening for, and even correcting, mutations.

Now, Kohrman and his team are working to develop a transgenic mouse that carries a normal Tmie gene, so they can test approaches for turning the gene on and off. They also hope to build a virus-based "vector" that will allow them to insert a normal Tmie gene into mice that carry a mutated version of the gene, in an attempt to correct the problem.

Kohrman’s colleague Yehoash Raphael, Ph.D., M.Sc., who directs Kresge’s Otopathology Laboratory, will continue to aid the reseach using an electron microscope to see the alterations that Tmie mutations cause in the stereocilia of the inner ear’s hair cells. By studying the cells at different stages of mouse development, and comparing their growth with the activation of the Tmie gene that occurs at the same time, they may learn exactly when and how Tmie works.

"Sensory cells are a small proportion of all the cells in the ear, but they’re some of the most important," says Kohrman. "Anything we can do to find out how they develop will be significant."

Besides Kohrman and Raphael, the mouse gene team includes U-M senior associate research scientist David F. Dolan, Ph.D.; U-M research associates Lisa Beyer, Gary Dootz and lead author Kristina Mitchem, M.S.; former U-M research assistant Ellen Hibbard; and Ken Bosom and Kenneth R. Johnson of the Jackson Laboratory.

Kara Gavin | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>