Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making cancer cells susceptible to therapeutic attack

23.08.2002


A researcher at the University of Illinois at Chicago College of Medicine is discovering how a gene known as E1A, found in a virus responsible for the common cold, renders tumor cells vulnerable to destruction.



"By explaining how E1A works, we hope to develop novel strategies to make human immunological defenses against tumors, as well as chemotherapy and radiation therapy, more effective in combating cancer," said Dr. James Cook, chief of infectious diseases and a member of the UIC Cancer Center.

The latest study is published in the July 23 issue of the Proceedings of the National Academy of Sciences.


To date, Cook and his colleagues have tested the E1A gene in cancer cells from four species: hamsters, mice, rats and humans. In all four cases, E1A renders the malignancies susceptible to defender cells of the immune system.

"We believe that these observations may reveal a common Achilles heel of many types of cancer cells," Cook said.

According to Cook, the goal is to find ways to make standard treatments for cancer more effective. Although the disease may respond to the first course of chemotherapy or radiation, typically tumor cells become more resistant later on, when the cancer recurs or metastasizes. The reasons are not clear.

Possibly, series of mutations are acquired as the tumor grows, yielding a naturally selected population of cells capable of thwarting killing agents. The standard clinical course is to change the drug or radiation strategy, but that may not be feasible or useful.

As an alternative, based on the studies Cook is undertaking, physicians may one day be able to alter the resistant malignant tissue itself, making it vulnerable to therapy.

"E1A is helping us identify the set of cellular switches that need to be turned on or off to render cancer cells more sensitive to therapeutic injury," Cook said.

In the present study, Cook and his colleagues examined a chain of molecular events that occur when cancer cells are confronted with one of the battery of chemicals produced by the immune system. The laboratory experiment mimicked what happens when a tumor begins to grow and the immune system tries to destroy the malignancy.

The chemical used in the study, called tumor necrosis factor, is manufactured primarily by macrophages, which are among the first cells on the scene in an immune response to tumors. When tumor necrosis factor attaches to receptors on the surface of a malignant cell, preparing the way for a full-scale attack, the cancer cell typically blocks the assault.

But when the E1A gene is inserted in the malignant cells, it shuts down the tumor’s defense mechanism. Cook showed that one key step in foiling the defense occurs when E1A gene products bind to cellular retinoblastoma proteins -- proteins that normally regulate a cell’s life cycle.

The finding suggests that the E1A gene renders malignant cells susceptible to attack not by interfering with their physiological functioning, but by preventing their use of normal cellular machinery to avoid destruction by the body’s immune defenses.

"Multiple molecular mechanisms triggered by E1A prevent tumor cells from thwarting an immunological attack," Cook said. "Further definition of these mechanisms will help us develop new concepts that may be useful for treating cancer, in part by enlisting the body to become a more active partner in fighting the disease."

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu/
http://www.uic.edu/com/cancer

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>