Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making cancer cells susceptible to therapeutic attack

23.08.2002


A researcher at the University of Illinois at Chicago College of Medicine is discovering how a gene known as E1A, found in a virus responsible for the common cold, renders tumor cells vulnerable to destruction.



"By explaining how E1A works, we hope to develop novel strategies to make human immunological defenses against tumors, as well as chemotherapy and radiation therapy, more effective in combating cancer," said Dr. James Cook, chief of infectious diseases and a member of the UIC Cancer Center.

The latest study is published in the July 23 issue of the Proceedings of the National Academy of Sciences.


To date, Cook and his colleagues have tested the E1A gene in cancer cells from four species: hamsters, mice, rats and humans. In all four cases, E1A renders the malignancies susceptible to defender cells of the immune system.

"We believe that these observations may reveal a common Achilles heel of many types of cancer cells," Cook said.

According to Cook, the goal is to find ways to make standard treatments for cancer more effective. Although the disease may respond to the first course of chemotherapy or radiation, typically tumor cells become more resistant later on, when the cancer recurs or metastasizes. The reasons are not clear.

Possibly, series of mutations are acquired as the tumor grows, yielding a naturally selected population of cells capable of thwarting killing agents. The standard clinical course is to change the drug or radiation strategy, but that may not be feasible or useful.

As an alternative, based on the studies Cook is undertaking, physicians may one day be able to alter the resistant malignant tissue itself, making it vulnerable to therapy.

"E1A is helping us identify the set of cellular switches that need to be turned on or off to render cancer cells more sensitive to therapeutic injury," Cook said.

In the present study, Cook and his colleagues examined a chain of molecular events that occur when cancer cells are confronted with one of the battery of chemicals produced by the immune system. The laboratory experiment mimicked what happens when a tumor begins to grow and the immune system tries to destroy the malignancy.

The chemical used in the study, called tumor necrosis factor, is manufactured primarily by macrophages, which are among the first cells on the scene in an immune response to tumors. When tumor necrosis factor attaches to receptors on the surface of a malignant cell, preparing the way for a full-scale attack, the cancer cell typically blocks the assault.

But when the E1A gene is inserted in the malignant cells, it shuts down the tumor’s defense mechanism. Cook showed that one key step in foiling the defense occurs when E1A gene products bind to cellular retinoblastoma proteins -- proteins that normally regulate a cell’s life cycle.

The finding suggests that the E1A gene renders malignant cells susceptible to attack not by interfering with their physiological functioning, but by preventing their use of normal cellular machinery to avoid destruction by the body’s immune defenses.

"Multiple molecular mechanisms triggered by E1A prevent tumor cells from thwarting an immunological attack," Cook said. "Further definition of these mechanisms will help us develop new concepts that may be useful for treating cancer, in part by enlisting the body to become a more active partner in fighting the disease."

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu/
http://www.uic.edu/com/cancer

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>