Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV targets active genes in cells

23.08.2002


HIV selectively inserts itself into active areas of a host cell’s genome, Salk Institute researchers have found for the first time. The fact that the virus hooks itself up to areas of the cell’s genome that are busy expressing themselves may help explain why HIV can replicate, or reproduce itself, so rapidly. The findings are being published as the cover article in the Friday, August 23, issue of the journal Cell.



"HIV seems to be targeting not just genes, but active genes," said Salk researcher Frederic Bushman, a specialist in infectious diseases who headed the research team. "That makes a lot of biological sense if the targeting has evolved to promote efficient expression of the viral genome once it integrates into the cell."

The findings may have implications for developing more effective gene therapies, said Bushman, Associate Professor in the Infectious Disease Laboratory. Gene therapy involves treating genetic disorders by using a mutated retrovirus to insert a new gene into a defective genome. Gene therapy could be made safer and more effective by knowing more about and taking advantage of a retrovirus’s targeting specificity, he said.


Retroviruses like HIV reproduce themselves by infecting a cell, making a DNA copy of the virus’s RNA genome, and integrating that DNA copy into a chromosome of the host. When the genome of the host is "read" to produce proteins and gene products, so is the genome of the virus-which reproduces itself. The question Bushman and his team sought to answer was, where in the human chromosome does the virus integrate itself?

The team took advantage of the recently published human genome sequence. The researchers infected human cells in tissue culture with the HIV virus, and then broke open the cells and sequenced pieces of DNA to find out where the viral DNA ended up. By matching DNA segments with the published human genome sequence, they found that that the viral DNA mostly ended up in areas of the chromosomes where there are human genes, rather than places in between.

The researchers then asked, "What is it about these genes? Are they active genes, or is it something else about being a gene that’s good?" Using another new technology, gene chips that help screen for products made by active genes, the researchers found that the genes that were targeted were disproportionately active ones.

In fact, Bushman said, the genes that are targeted are specifically ones that are turned on by infection with HIV itself. When the virus enters a cell, it triggers a response by the cell that includes making new proteins in response to the infection. So in essence, the HIV virus wields a double-edged sword, creating a weakness and then taking advantage of it.

Most HIV-infected cells die relatively quickly, within a day or two, Bushman said, so it’s to the virus’s advantage to be able to reproduce quickly. "Viruses that integrate into different points of the human genome inside a cell replicate with very different efficiencies," Bushman said. "There are bad places to be, where it’s hard to express your genome, and there are other places where you can express very efficiently." HIV, it appears, is extremely efficient.

HIV differs from other types of genomic pathogens, Bushman said, that have evolved to live with their host on a long-term basis. These may target relatively benign regions of the genome where they don’t hurt the host, and they reproduce because the cells continue to live, grow and divide, reproducing the pathogen as the cell itself reproduces.

"Not so with HIV," Bushman said. "HIV has aggressive targeting. That targeting is damaging to the host, but for an aggressive parasite in a cell that’s only going to live for a day or so, it makes a sensible evolutionary strategy."


Other members of the research team included Salk researchers Astrid Shröder (the paper’s lead author), Paul Shinn, Huaming Chen, Charles Berry, and Joseph Ecker.

The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit institution dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. Jonas Salk, M.D., founded the Institute in 1960 with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Kristin Bertell | EurekAlert!
Further information:
http://www.salk.edu/

More articles from Health and Medicine:

nachricht A 'half-hearted' solution to one-sided heart failure
24.11.2017 | Boston Children's Hospital

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>