Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV targets active genes in cells

23.08.2002


HIV selectively inserts itself into active areas of a host cell’s genome, Salk Institute researchers have found for the first time. The fact that the virus hooks itself up to areas of the cell’s genome that are busy expressing themselves may help explain why HIV can replicate, or reproduce itself, so rapidly. The findings are being published as the cover article in the Friday, August 23, issue of the journal Cell.



"HIV seems to be targeting not just genes, but active genes," said Salk researcher Frederic Bushman, a specialist in infectious diseases who headed the research team. "That makes a lot of biological sense if the targeting has evolved to promote efficient expression of the viral genome once it integrates into the cell."

The findings may have implications for developing more effective gene therapies, said Bushman, Associate Professor in the Infectious Disease Laboratory. Gene therapy involves treating genetic disorders by using a mutated retrovirus to insert a new gene into a defective genome. Gene therapy could be made safer and more effective by knowing more about and taking advantage of a retrovirus’s targeting specificity, he said.


Retroviruses like HIV reproduce themselves by infecting a cell, making a DNA copy of the virus’s RNA genome, and integrating that DNA copy into a chromosome of the host. When the genome of the host is "read" to produce proteins and gene products, so is the genome of the virus-which reproduces itself. The question Bushman and his team sought to answer was, where in the human chromosome does the virus integrate itself?

The team took advantage of the recently published human genome sequence. The researchers infected human cells in tissue culture with the HIV virus, and then broke open the cells and sequenced pieces of DNA to find out where the viral DNA ended up. By matching DNA segments with the published human genome sequence, they found that that the viral DNA mostly ended up in areas of the chromosomes where there are human genes, rather than places in between.

The researchers then asked, "What is it about these genes? Are they active genes, or is it something else about being a gene that’s good?" Using another new technology, gene chips that help screen for products made by active genes, the researchers found that the genes that were targeted were disproportionately active ones.

In fact, Bushman said, the genes that are targeted are specifically ones that are turned on by infection with HIV itself. When the virus enters a cell, it triggers a response by the cell that includes making new proteins in response to the infection. So in essence, the HIV virus wields a double-edged sword, creating a weakness and then taking advantage of it.

Most HIV-infected cells die relatively quickly, within a day or two, Bushman said, so it’s to the virus’s advantage to be able to reproduce quickly. "Viruses that integrate into different points of the human genome inside a cell replicate with very different efficiencies," Bushman said. "There are bad places to be, where it’s hard to express your genome, and there are other places where you can express very efficiently." HIV, it appears, is extremely efficient.

HIV differs from other types of genomic pathogens, Bushman said, that have evolved to live with their host on a long-term basis. These may target relatively benign regions of the genome where they don’t hurt the host, and they reproduce because the cells continue to live, grow and divide, reproducing the pathogen as the cell itself reproduces.

"Not so with HIV," Bushman said. "HIV has aggressive targeting. That targeting is damaging to the host, but for an aggressive parasite in a cell that’s only going to live for a day or so, it makes a sensible evolutionary strategy."


Other members of the research team included Salk researchers Astrid Shröder (the paper’s lead author), Paul Shinn, Huaming Chen, Charles Berry, and Joseph Ecker.

The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit institution dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. Jonas Salk, M.D., founded the Institute in 1960 with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Kristin Bertell | EurekAlert!
Further information:
http://www.salk.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>