Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds link between common neurological disorder and Alzheimer’s disease

22.08.2002


A new study by scientists at The Wistar Institute links the genes responsible for neurofibromatosis, a common neurological disorder, to a protein thought to play a role in Alzheimer’s disease.



In establishing a connection between the two diseases, the research opens new lines of thinking for investigators studying both diseases, while also providing basic biological insights into vital cellular processes. A report on the study was published electronically on August 20 in the Journal of Biological Chemistry.

The protein shared by neurofibromatosis and Alzheimer’s disease is kinesin-1, known to be pivotal to protein trafficking, which is the movement of various needed proteins from one part of a cell to another. Neurons are characterized by long arms called processes that extend away from the cell body, and under normal circumstances proteins move along a system of microtubules to reach all parts of the neuron. Problems with the internal transport of proteins can lead to neuronal malfunction and death.


"This protein, kinesin-1, is like a locomotive that pulls cargo throughout the cell," says Ramin Shiekhattar, Ph.D., an associate professor at The Wistar Institute and senior author on the study. "In neurons, it pulls its cargo down microtubules, which can be thought of like the rails for the locomotive. Kinesin-1 is vital for efficient protein trafficking within neurons and other cells, and it’s of great interest to us to find it linked to the genes that cause neurofibromatosis."

The two genes linked to the disease are among the most commonly mutated genes in the entire human genome. The primary neurofibromatosis-related gene, called NF1, or neurofibromin, was identified in the early 1990s by Francis S. Collins, M.D., Ph.D., now director of the National Human Genome Research Institute. Another less common gene linked to the same disorder is called NF2, or merlin. Since the discovery of these genes, however, most aspects of their activity in the body and in neurofibromatosis have remained a mystery.

Neurofibromatosis is a common disorder, more prevalent than cystic fibrosis, muscular dystrophy, Huntington’s disease, and Tay-Sachs disease combined. It can cause tumors along nerves throughout the body and can affect the development of non-nervous tissues such as bones and skin. The disease can also cause learning disabilities of differing severity. While most cases of neurofibromatosis are mild to moderate, it can lead to disfigurement, blindness, deafness, skeletal abnormalities, retardation, and tumors of the skin, spine, and brain.

In the current study, the Wistar researchers used the tools of biochemistry to identify distinct NF1- and NF2-containing protein complexes in the nucleus and the cytoplasm of cells. An analysis by mass spectrometry of the nuclear complex revealed four subunits, one of which was kinesin-1.

"Kinesin-1 is the real engine of this protein complex," Shiekhattar says.

Unrelated recent studies have also shown that kinesin-1 interacts with a protein called amyloid precursor protein, of APP, which has been implicated in Alzheimer’s disease, a major cause of dementia in older people.

"If kinesin-1 is the locomotive, then APP’s role appears to be to hook the cargo to the locomotive," Shiekhattar explains. "Finding kinesin-1 in protein complexes that also contain NF1 and NF2 clearly ties neurofibromatosis and Alzheimer’s disease to a common cellular pathway."


The lead author on the Journal of Biological Chemistry study is Mohamed-Ali Hakimi, Ph.D., at The Wistar Institute. Wistar professor David W. Speicher, Ph.D., collaborated on the study. This research was supported by grants from National Institutes of Health.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center - one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>