Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential cause of arthritis discovered

22.08.2002


Carbohydrate activates body’s defenses, causing inflammation



Researchers at Brigham and Women’s Hospital (BWH) and Harvard Medical School (HMS) have shown that certain types of naturally occurring carbohydrates in the body may cause rheumatoid arthritis, a debilitating, painful disease affecting hundreds of millions of people worldwide.

Although there have been promising advances in treating the symptoms of arthritis, the exact causes of arthritic inflammation, swelling, and destruction of the joints has remained elusive. Now, researchers at BWH have for the first time associated carbohydrates present naturally in the body with this disease.


Dr. Julia Ying Wang, the lead BWH researcher in the study, and an Assistant Professor of Medicine at HMS, has extensively examined the role of carbohydrates in diseases and infections. She will present her recent findings on arthritis at the American Chemical Society’s national meeting, to be held from August 18th through August 22nd, at the Hynes Convention Center and surrounding hotels.

Wang began wondering whether a particular class of carbohydrates, known as glycosaminoglycans (GAGs), triggered an immune response in the body. GAGs are naturally present as a major component of joint cartilage, joint fluid, connective tissue, and skin. In collaboration with Michael H. Roehrl, M.D., from HMS, Wang studied the effects GAGs had on mice, who subsequently experienced arthritic symptoms, including swelling, inflammation, and joint damage.

"This study shows that rheumatoid arthritis may result from the body’s mishandling of its own carbohydrates that, under normal circumstances, would not be interpreted as a threat," said Wang. "We found that inflammatory cells that accumulate in arthritic joints attach themselves directly to the glycosaminoglycans. This accumulation of cells leads to painful inflammation and swelling in the affected tissue."

In addition to their work with mice, Wang and Roehrl also examined human tissue taken from arthritis patients. They discovered the same type of glycosaminoglycan-binding cells in the human tissue. This is the first direct demonstration of such cells in humans and animals.

"It leads us to believe that rheumatoid arthritis may be an unusual immune response," added Wang.

Given her findings, Wang said subsequent research would most likely focus on the development of drugs aimed at stopping the growth, expansion, or adhesion of immune cells that react to glycosaminoglycans. Wang will continue to investigate carbohydrates and how they affect the body’s immune system.

"This research is extremely promising," said John Mekalanos, Professor and Chairman of Microbiology and Molecular Genetics at HMS. "This study also suggests plausible models for how bacterial infection might trigger arthritis and how we might go about reversing this debilitating conditions with new therapies." Mekalanos added, "We are clearly a step closer to understanding the causes of a disease that has left the medical community with unanswered questions and many patients with discomfort and pain."

Wang will speak on Wednesday, Aug. 21 at 1:50 p.m. in the Sheraton Boston, Republic B. For more information about the American Chemical Society meeting, contact Charmayne Marsh at 617-351-6879 or 202-872-4445.


###
BWH is a 716-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare System, an integrated health care delivery network. Internationally recognized as a leading academic health care institution, BWH is committed to excellence in patient care, medical research, and the training and education of health care professionals. The hospital’s preeminence in all aspects of clinical care is coupled with its strength in medical research. A leading recipient of research grants from the National Institutes of Health, BWH conducts internationally acclaimed clinical, basic and epidemiological studies.

This release is being issued simultaneously by Brigham and Women’s Hospital and the American Chemical Society.

Charmayne Marsh, Jeff Ventura | EurekAlert!
Further information:
http://www.acs.org/
http://www.brighamandwomens.org/

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>