Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential cause of arthritis discovered

22.08.2002


Carbohydrate activates body’s defenses, causing inflammation



Researchers at Brigham and Women’s Hospital (BWH) and Harvard Medical School (HMS) have shown that certain types of naturally occurring carbohydrates in the body may cause rheumatoid arthritis, a debilitating, painful disease affecting hundreds of millions of people worldwide.

Although there have been promising advances in treating the symptoms of arthritis, the exact causes of arthritic inflammation, swelling, and destruction of the joints has remained elusive. Now, researchers at BWH have for the first time associated carbohydrates present naturally in the body with this disease.


Dr. Julia Ying Wang, the lead BWH researcher in the study, and an Assistant Professor of Medicine at HMS, has extensively examined the role of carbohydrates in diseases and infections. She will present her recent findings on arthritis at the American Chemical Society’s national meeting, to be held from August 18th through August 22nd, at the Hynes Convention Center and surrounding hotels.

Wang began wondering whether a particular class of carbohydrates, known as glycosaminoglycans (GAGs), triggered an immune response in the body. GAGs are naturally present as a major component of joint cartilage, joint fluid, connective tissue, and skin. In collaboration with Michael H. Roehrl, M.D., from HMS, Wang studied the effects GAGs had on mice, who subsequently experienced arthritic symptoms, including swelling, inflammation, and joint damage.

"This study shows that rheumatoid arthritis may result from the body’s mishandling of its own carbohydrates that, under normal circumstances, would not be interpreted as a threat," said Wang. "We found that inflammatory cells that accumulate in arthritic joints attach themselves directly to the glycosaminoglycans. This accumulation of cells leads to painful inflammation and swelling in the affected tissue."

In addition to their work with mice, Wang and Roehrl also examined human tissue taken from arthritis patients. They discovered the same type of glycosaminoglycan-binding cells in the human tissue. This is the first direct demonstration of such cells in humans and animals.

"It leads us to believe that rheumatoid arthritis may be an unusual immune response," added Wang.

Given her findings, Wang said subsequent research would most likely focus on the development of drugs aimed at stopping the growth, expansion, or adhesion of immune cells that react to glycosaminoglycans. Wang will continue to investigate carbohydrates and how they affect the body’s immune system.

"This research is extremely promising," said John Mekalanos, Professor and Chairman of Microbiology and Molecular Genetics at HMS. "This study also suggests plausible models for how bacterial infection might trigger arthritis and how we might go about reversing this debilitating conditions with new therapies." Mekalanos added, "We are clearly a step closer to understanding the causes of a disease that has left the medical community with unanswered questions and many patients with discomfort and pain."

Wang will speak on Wednesday, Aug. 21 at 1:50 p.m. in the Sheraton Boston, Republic B. For more information about the American Chemical Society meeting, contact Charmayne Marsh at 617-351-6879 or 202-872-4445.


###
BWH is a 716-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare System, an integrated health care delivery network. Internationally recognized as a leading academic health care institution, BWH is committed to excellence in patient care, medical research, and the training and education of health care professionals. The hospital’s preeminence in all aspects of clinical care is coupled with its strength in medical research. A leading recipient of research grants from the National Institutes of Health, BWH conducts internationally acclaimed clinical, basic and epidemiological studies.

This release is being issued simultaneously by Brigham and Women’s Hospital and the American Chemical Society.

Charmayne Marsh, Jeff Ventura | EurekAlert!
Further information:
http://www.acs.org/
http://www.brighamandwomens.org/

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>