Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Potential cause of arthritis discovered


Carbohydrate activates body’s defenses, causing inflammation

Researchers at Brigham and Women’s Hospital (BWH) and Harvard Medical School (HMS) have shown that certain types of naturally occurring carbohydrates in the body may cause rheumatoid arthritis, a debilitating, painful disease affecting hundreds of millions of people worldwide.

Although there have been promising advances in treating the symptoms of arthritis, the exact causes of arthritic inflammation, swelling, and destruction of the joints has remained elusive. Now, researchers at BWH have for the first time associated carbohydrates present naturally in the body with this disease.

Dr. Julia Ying Wang, the lead BWH researcher in the study, and an Assistant Professor of Medicine at HMS, has extensively examined the role of carbohydrates in diseases and infections. She will present her recent findings on arthritis at the American Chemical Society’s national meeting, to be held from August 18th through August 22nd, at the Hynes Convention Center and surrounding hotels.

Wang began wondering whether a particular class of carbohydrates, known as glycosaminoglycans (GAGs), triggered an immune response in the body. GAGs are naturally present as a major component of joint cartilage, joint fluid, connective tissue, and skin. In collaboration with Michael H. Roehrl, M.D., from HMS, Wang studied the effects GAGs had on mice, who subsequently experienced arthritic symptoms, including swelling, inflammation, and joint damage.

"This study shows that rheumatoid arthritis may result from the body’s mishandling of its own carbohydrates that, under normal circumstances, would not be interpreted as a threat," said Wang. "We found that inflammatory cells that accumulate in arthritic joints attach themselves directly to the glycosaminoglycans. This accumulation of cells leads to painful inflammation and swelling in the affected tissue."

In addition to their work with mice, Wang and Roehrl also examined human tissue taken from arthritis patients. They discovered the same type of glycosaminoglycan-binding cells in the human tissue. This is the first direct demonstration of such cells in humans and animals.

"It leads us to believe that rheumatoid arthritis may be an unusual immune response," added Wang.

Given her findings, Wang said subsequent research would most likely focus on the development of drugs aimed at stopping the growth, expansion, or adhesion of immune cells that react to glycosaminoglycans. Wang will continue to investigate carbohydrates and how they affect the body’s immune system.

"This research is extremely promising," said John Mekalanos, Professor and Chairman of Microbiology and Molecular Genetics at HMS. "This study also suggests plausible models for how bacterial infection might trigger arthritis and how we might go about reversing this debilitating conditions with new therapies." Mekalanos added, "We are clearly a step closer to understanding the causes of a disease that has left the medical community with unanswered questions and many patients with discomfort and pain."

Wang will speak on Wednesday, Aug. 21 at 1:50 p.m. in the Sheraton Boston, Republic B. For more information about the American Chemical Society meeting, contact Charmayne Marsh at 617-351-6879 or 202-872-4445.

BWH is a 716-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare System, an integrated health care delivery network. Internationally recognized as a leading academic health care institution, BWH is committed to excellence in patient care, medical research, and the training and education of health care professionals. The hospital’s preeminence in all aspects of clinical care is coupled with its strength in medical research. A leading recipient of research grants from the National Institutes of Health, BWH conducts internationally acclaimed clinical, basic and epidemiological studies.

This release is being issued simultaneously by Brigham and Women’s Hospital and the American Chemical Society.

Charmayne Marsh, Jeff Ventura | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>