Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique to Induce Cancer Cells to ‘Commit Suicide’

20.08.2002


Developed by Hebrew University Scientists



A new technique for tricking cancer cells into “committing suicide” and thus preventing their spread has been developed by researchers at the Hebrew University of Jerusalem. Their work is described in the September issue of Nature Biotechnology, which was published this week in its Internet version.

The technique involves the engineering of a virus that will induce the cancer cell to behave in a manner similar to that of normal cells that are under attack.


In normal cells which have been attacked by a virus, a protein known as PKR is activated as the result of RNA replication within the affected cell. This protein causes the cell to destroy itself, thus preventing the spread of the virus. Normally, PKR stays dormant, doing nothing unless the cell is provoked by an invading virus.

Graduate student Alexei Shir (who has since earned his Ph.D.), together with his advisor, Alexander Levitzki, who is Wolfson Family Professor of Biochemistry at the Alexander Silberman Institute of Life Sciences at the Hebrew University, devised a strategy designed to “trick” cancer cells into activating PKR without activating it in normal cells. Shir and Levitzki developed a technique which involves the engineering of a unique virus, from the same family as the HIV virus, which can be “smuggled” into the cancer cells. This virus, in turn, triggers the PKR activation in the cancerous cells – which otherwise would not occur – and induces them to die, much as ordinary cells would when attacked by a virus.

The virus developed by the Hebrew University researchers is directed specifically against an especially virulent brain tumor cancer and is not harmful to normal cells. This represents a significant improvement over current chemotherapy treatments, which kill cancer cells but also have harmful effects on normal cells. In laboratory tests, the induced virus technique resulted in significant halting of the spread of the brain tumor. For his work, Dr. Shir was awarded one of the Kaye Innovation Awards at the Hebrew University earlier this year.

Prof. Levitzki said that other graduate students of his are now adapting this strategy to lymphoma and leukemia.

A start-up company, Algen Biopharmaceuticals, has been established by the Yissum Research Development Co. of the Hebrew University, together with Prof. Levitzki and investors, to further develop this technology. Prof. Levitzki cautioned that a great deal of laboratory and clinical work remains to be done before this technique will be able to be implemented in treatment of cancer patients.

Heidi Gleit | Hebrew University

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>