Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Technique to Induce Cancer Cells to ‘Commit Suicide’


Developed by Hebrew University Scientists

A new technique for tricking cancer cells into “committing suicide” and thus preventing their spread has been developed by researchers at the Hebrew University of Jerusalem. Their work is described in the September issue of Nature Biotechnology, which was published this week in its Internet version.

The technique involves the engineering of a virus that will induce the cancer cell to behave in a manner similar to that of normal cells that are under attack.

In normal cells which have been attacked by a virus, a protein known as PKR is activated as the result of RNA replication within the affected cell. This protein causes the cell to destroy itself, thus preventing the spread of the virus. Normally, PKR stays dormant, doing nothing unless the cell is provoked by an invading virus.

Graduate student Alexei Shir (who has since earned his Ph.D.), together with his advisor, Alexander Levitzki, who is Wolfson Family Professor of Biochemistry at the Alexander Silberman Institute of Life Sciences at the Hebrew University, devised a strategy designed to “trick” cancer cells into activating PKR without activating it in normal cells. Shir and Levitzki developed a technique which involves the engineering of a unique virus, from the same family as the HIV virus, which can be “smuggled” into the cancer cells. This virus, in turn, triggers the PKR activation in the cancerous cells – which otherwise would not occur – and induces them to die, much as ordinary cells would when attacked by a virus.

The virus developed by the Hebrew University researchers is directed specifically against an especially virulent brain tumor cancer and is not harmful to normal cells. This represents a significant improvement over current chemotherapy treatments, which kill cancer cells but also have harmful effects on normal cells. In laboratory tests, the induced virus technique resulted in significant halting of the spread of the brain tumor. For his work, Dr. Shir was awarded one of the Kaye Innovation Awards at the Hebrew University earlier this year.

Prof. Levitzki said that other graduate students of his are now adapting this strategy to lymphoma and leukemia.

A start-up company, Algen Biopharmaceuticals, has been established by the Yissum Research Development Co. of the Hebrew University, together with Prof. Levitzki and investors, to further develop this technology. Prof. Levitzki cautioned that a great deal of laboratory and clinical work remains to be done before this technique will be able to be implemented in treatment of cancer patients.

Heidi Gleit | Hebrew University

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>