Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique to Induce Cancer Cells to ‘Commit Suicide’

20.08.2002


Developed by Hebrew University Scientists



A new technique for tricking cancer cells into “committing suicide” and thus preventing their spread has been developed by researchers at the Hebrew University of Jerusalem. Their work is described in the September issue of Nature Biotechnology, which was published this week in its Internet version.

The technique involves the engineering of a virus that will induce the cancer cell to behave in a manner similar to that of normal cells that are under attack.


In normal cells which have been attacked by a virus, a protein known as PKR is activated as the result of RNA replication within the affected cell. This protein causes the cell to destroy itself, thus preventing the spread of the virus. Normally, PKR stays dormant, doing nothing unless the cell is provoked by an invading virus.

Graduate student Alexei Shir (who has since earned his Ph.D.), together with his advisor, Alexander Levitzki, who is Wolfson Family Professor of Biochemistry at the Alexander Silberman Institute of Life Sciences at the Hebrew University, devised a strategy designed to “trick” cancer cells into activating PKR without activating it in normal cells. Shir and Levitzki developed a technique which involves the engineering of a unique virus, from the same family as the HIV virus, which can be “smuggled” into the cancer cells. This virus, in turn, triggers the PKR activation in the cancerous cells – which otherwise would not occur – and induces them to die, much as ordinary cells would when attacked by a virus.

The virus developed by the Hebrew University researchers is directed specifically against an especially virulent brain tumor cancer and is not harmful to normal cells. This represents a significant improvement over current chemotherapy treatments, which kill cancer cells but also have harmful effects on normal cells. In laboratory tests, the induced virus technique resulted in significant halting of the spread of the brain tumor. For his work, Dr. Shir was awarded one of the Kaye Innovation Awards at the Hebrew University earlier this year.

Prof. Levitzki said that other graduate students of his are now adapting this strategy to lymphoma and leukemia.

A start-up company, Algen Biopharmaceuticals, has been established by the Yissum Research Development Co. of the Hebrew University, together with Prof. Levitzki and investors, to further develop this technology. Prof. Levitzki cautioned that a great deal of laboratory and clinical work remains to be done before this technique will be able to be implemented in treatment of cancer patients.

Heidi Gleit | Hebrew University

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>