Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser procedure effective in correcting nasal blockages associated with deviated septum

15.08.2002


A new laser procedure that requires only local anesthetic is effective in treating nasal passageway obstructions associated with a deviated nasal septum, according to an article in the July-September issue of The Archives of Facial Plastic Surgery, one of the JAMA/Archives journals. The procedure uses heat generated by a laser to soften cartilage abnormalities so that they can be flattened or shaped to clear the nasal passages.



The septum is the cartilage wall that divides and separates the nostrils. People who have a deviated septum may have a hole in the septum, or other malformations that can block the nasal passageways and can cause varying degrees of difficulty with breathing. Traditional surgery to solve these problems uses a scalpel to cut away flaps inside the nose and reshape the cartilage manually. Stitches are needed to close the surgical wounds. The procedure is costly and the patient may need time off from work to recover. The new procedure uses a laser to heat the malformations until they are soft enough to be pressed or formed so that they aren’t blocking the nasal passageways.

Yuri Ovchinnikov, M.D., of Moscow State University, Russia, and colleagues used the laser procedure on 110 patients between 11 years old and 66 years old. Patients were followed up for an average of 18 months.


The laser outpatient procedure lasted 6 to 8 minutes. The researchers found that 84 (76 percent) patients had an improvement in their airways, and with symptoms associated with nasal blockages. The authors write, "After 7 to 10 days, the septal cartilage in all patients tended to recover some of the initial deformity (shape-memory effect). Two to 3 weeks later, the cartilage started to restraighten. The septum reached a stable shape after 3 to 4 weeks. This shape change remained stable throughout the observation period (2 to 3 years)."

In 27 (24 percent) of the patients, abnormalities treated with the laser procedure resumed their original shapes. The authors found that these patients had spurs or other abnormalities, didn’t receive uniform heating of the cartilage and had other disorders, like rhinitis, a chronic allergic condition causing breathing problems, nasal irritation and runny nose.

The researchers conclude "Our results in 110 patients using this new laser-based procedure to reshape the nasal septum may provide an alternative to classic operations for reducing morbidity, operating room times, and the economic impact of time lost from work."


(Arch Facial Plast Surg. 2002;4:180-185. Available post embargo at archfacial.com)

Editor’s Note: This study was supported by a grant from the U.S. Civilian Research & Development Foundation (Arlington, Va) and by grants from the Russian Foundation for Basic Research (Moscow).


Emil Sobol | EurekAlert!
Further information:
http://www.ama-assn.org/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>