Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy may increase cancer cure rates, medical physicists show

14.08.2002


An innovative combination of two medical procedures-gene therapy and radiation therapy--can increase cancer cure rates by significant amounts compared to the cure rates offered by conventional radiation therapy alone, a Virginia Commonwealth University (VCU) team has concluded. The researchers presented their results last month in Montreal at the annual conference of the American Association of Physicists in Medicine.



Known as genetic radiotherapy, the combined treatment can potentially increase cancer cure rates by up to 70% over present therapies that exclusively use radiation therapy, the researchers say. The combined technique is currently evolving from laboratory studies to human clinical trials.

In genetic radiotherapy, cancer cells are infected with a virus that makes tumor cells more sensitive to--and more easily destroyed by--radiation such as x-rays. At last month’s medical physics meeting, the VCU researchers presented a quantitative model predicting the increase in cancer cure rates with genetic radiotherapy.


"Our model incorporates human patient data from large radiotherapy clinical trials as well as experimental genetic therapy data from laboratory work," says Dr. Paul Keall, an assistant professor in VCU’s radiation oncology department.

To calculate the projected cure rates, the group considers the fraction of tumor cells that are genetically modified, or "transduced," by the injected virus. They also consider the sensitivity of the genetically transformed cells to radiation.

With present laboratory technology, the researchers predict an increase in cure rate of 15% when genetic radiotherapy is used instead of conventional radiation treatments on non-genetically-altered cancer cells. Exploring an ideal situation in which all of the cancer cells are genetically modified, they find the technique can theoretically increase the cancer cure rate by as much as 70%. In their model, a "cure" means a lack of tumor recurrence at the site where the tumor was treated.

"Thus, our results indicate that genetic radiotherapy has the potential to significantly improve cancer cure rates compared to current radiotherapy practices," says Keall. "Needed now are carefully controlled studies to test our predictions."


###
Meeting paper: "Radiobiological Predictions for Genetically Radiosensitized Tumors," by Paul Keall, PhD Guido Lammering, MD, Theodore Chung, MD, and Rupert Schmidt-Ullrich, MD, all at Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA, paper MO-E-517B-7, Monday, July 15, 2002, 44th Annual AAPM Meeting, Montreal, Quebec.

Ben Stein | EurekAlert!
Further information:
http://www.aip.org/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>