Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find gene that causes leukemia in children with Down syndrome


Researchers from the University of Chicago have identified a gene defect that causes the development of leukemia in children with Down syndrome. The discovery, scheduled for Advance Online Publication on Nature Genetics’s website on 12 August, could speed diagnosis and provide a new target for therapy.

Children with Down syndrome are 10 to 20 times as likely as unaffected children to develop leukemia. They most commonly develop a type known as acute megakaryoblastic leukemia (AMKL), which is extremely rare in children without Down syndrome.

"This study, for the first time, defines a part of the molecular pathway leading to acute megakaryoblastic leukemia," said John Crispino, Ph.D., assistant professor in the Ben May Institute for Cancer Research at the University of Chicago and director of the study. "Having three copies of chromosome 21 places children with Down syndrome at increased risk for leukemia, then this abnormality tips the balance toward AMKL."

"This is a rare malignancy," added co-author Michelle Le Beau, Ph.D., professor of medicine at the University, "but a great deal of what we now know about the molecular basis of cancer has come from disorders like this. Our finding pinpoints a specific pathway that leads to this kind of cancer, offers a method for rapid and precise diagnosis, and suggests more focused ways to treat this disease."

Unlike most studies, which begin with a disease then search for the genetic trigger, this one began with a suspect gene. Crispino’s laboratory had been interested in a gene called GATA1 for years because it played a role in the maturation of blood cells.

Dr. Crispino hypothesized that GATA1 might be mutated or dysregulated in leukemia. He contacted Le Beau, an expert on the genetics of leukemia. After they identified a patient with Down syndrome who had a mutation in GATA1 and had acute megakaryoblastic leukemia in a small pilot study they began searching for other patients with childhood leukemia and an abnormal copy of this gene.

When they looked at DNA from 75 patients with various types of myeloid leukemia and 21 healthy people, they found that six out of six patients with Down syndrome and acute megakaryoblastic leukemia had an alteration in GATA1. None of the other patients surveyed had an abnormal version of this gene.

GATA1 is a transcription factor; it controls the expression of other genes. It normally functions to regulate genes that control the production of red blood cells and platelets, which enable the blood to carry oxygen and to clot. Previous studies in mice had shown that the loss of GATA1 caused the cells that give rise to platelets to proliferate excessively.

The abnormal GATA1 gene, found in the leukemia patients, produces a protein with a piece missing. The incomplete protein appears to be far less effective in regulating target genes, resulting in an outcome that is similar to having no GATA1 protein at all.

"GATA1 is just part of the story," said Crispino, "but it is a crucial early step that should lead us to the rest of the pathway." The authors suspect that it requires several gene abnormalities working in tandem to cause full-fledged acute megakaryoblastic leukemia and they are searching for the other genes that combine with GATA1 to trigger this disease.

Funding for this study was provided by the Burroughs Wellcome Foundation, the Aplastic Anemia and MDS International Foundation, the Cancer Research Foundation and the Picower Foundation. Additional authors include Joshua Wechsler, Marianne Greene and John Anastasi of the University of Chicago; Michael McDevitt of Johns Hopkins University; and Judith Karp of the University of Maryland.

John Easton | EurekAlert!

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>