Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into insect antimicrobials point the way to novel antibiotics

09.08.2002


The emergence of antibiotic-resistant strains of bacteria has become a serious public-health concern, and, accordingly, scientists are investigating new classes of antimicrobials for their efficacy against disease-causing bacteria. One developing area of study involves antimicrobial peptides derived from insects. Recent studies have identified the protein target in bacteria of these antimicrobial peptides and suggested that the peptides are not toxic to mammalian cells including those of humans, raising the possibility that they could someday be used to develop new antibiotic drugs.

Now, in a new study of an insect-derived antimicrobial peptide called pyrrhocoricin, scientists at The Wistar Institute have identified which segments of the peptide are necessary for the killing of bacteria and which segments are involved in bacterial and mammalian cell entry. The Wistar scientists further confirmed that this antimicrobial peptide must bind to the previously identified intracellular bacterial protein target in order to kill bacteria. The research team also identified a possible binding site for the antimicrobial peptide on the target bacterial protein for the first time.

Because the stretches of the peptide that are responsible for cell entry are separate from the segments responsible for bacteria killing, the research team says that it might be possible to use an altered version of the peptide as a delivery vehicle for a variety of drugs into human cells, rather than solely as an antimicrobial. The results are published online today in the European Journal of Biochemistry.



"This study lays the groundwork for the design of a novel family of antimicrobials," says Laszlo Otvos Jr., Ph.D., associate professor at The Wistar Institute and senior author of the study. "It also suggests that these peptides could be used as a universal drug delivery vehicle, whether for new drugs or to improve the delivery of existing peptide-based drugs."

The antimicrobial peptide kills bacteria by binding to a protein target called DnaK. DnaK is a special type of protein called a heat-shock protein, responsible for correcting misshapen proteins. When the antimicrobial peptide binds to DnaK, it prevents DnaK from doing its protein-repair work, killing the bacteria.The Wistar research team studied the binding of engineered analogs of pyrrhocoricin to a series of bacterial strains. As they anticipated based on their previous investigations, they found a complete correlation between the peptide binding to a small fragment of bacterial DnaK and bacteria killing. The researchers also confirmed that the peptide does not bind to the mouse or human protein equivalents to DnaK, further suggesting that the peptide would not be toxic to mammals.

The investigators identified a possible binding surface for the antimicrobial peptide on an E. coli DnaK fragment. Knowledge of this binding site could lead to the development of new drugs tailored to combat E. coli. It may also be possible to develop drugs that would kill bacteria that are unresponsive to native pyrrhocoricin, but for which the DnaK structure is known.

In related ongoing studies, Otvos and his team have shown that analogs of pyrrhocoricin are able to kill clinical strains of resistant bacteria that cause urinary, gastrointestinal and respiratory-tract infections. In a mouse H. influenzae lung infection model, the researchers have shown that a pyrrhocoricin analog can dramatically reduce bacterial counts in the lungs and be administered in a non-invasive way. These studies are demonstrating that engineered antibacterial peptides can be used in a clinical setting against bacteria with resistance to existing antibiotics.


In addition to senior author Otvos, the lead author of the study is Goran Kragol, Ph.D., and co-authors are Michael A. Chattergoon, B.S., Mare Cudic, Ph.D., Barry A. Condie, B.S., and associate professor Luis J. Montaner, D.V.M., D.Phil., all of The Wistar Institute. Additional co-authors are Ralf Hoffmann, Ph.D., of Heinrich-Heine-Universität, Sandor Lovas, Ph.D., of Creighton University, Philippe Bulet, Ph.D., of Institut de Biologie Moleculaire et Cellulaire, and K. Johan Rosengren, Ph.D., of the University of Queensland.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Cente- one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

Marion Wyce | EurekAlert!
Further information:
http://www.wistar.upenn.edu),

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>