Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into insect antimicrobials point the way to novel antibiotics

09.08.2002


The emergence of antibiotic-resistant strains of bacteria has become a serious public-health concern, and, accordingly, scientists are investigating new classes of antimicrobials for their efficacy against disease-causing bacteria. One developing area of study involves antimicrobial peptides derived from insects. Recent studies have identified the protein target in bacteria of these antimicrobial peptides and suggested that the peptides are not toxic to mammalian cells including those of humans, raising the possibility that they could someday be used to develop new antibiotic drugs.

Now, in a new study of an insect-derived antimicrobial peptide called pyrrhocoricin, scientists at The Wistar Institute have identified which segments of the peptide are necessary for the killing of bacteria and which segments are involved in bacterial and mammalian cell entry. The Wistar scientists further confirmed that this antimicrobial peptide must bind to the previously identified intracellular bacterial protein target in order to kill bacteria. The research team also identified a possible binding site for the antimicrobial peptide on the target bacterial protein for the first time.

Because the stretches of the peptide that are responsible for cell entry are separate from the segments responsible for bacteria killing, the research team says that it might be possible to use an altered version of the peptide as a delivery vehicle for a variety of drugs into human cells, rather than solely as an antimicrobial. The results are published online today in the European Journal of Biochemistry.



"This study lays the groundwork for the design of a novel family of antimicrobials," says Laszlo Otvos Jr., Ph.D., associate professor at The Wistar Institute and senior author of the study. "It also suggests that these peptides could be used as a universal drug delivery vehicle, whether for new drugs or to improve the delivery of existing peptide-based drugs."

The antimicrobial peptide kills bacteria by binding to a protein target called DnaK. DnaK is a special type of protein called a heat-shock protein, responsible for correcting misshapen proteins. When the antimicrobial peptide binds to DnaK, it prevents DnaK from doing its protein-repair work, killing the bacteria.The Wistar research team studied the binding of engineered analogs of pyrrhocoricin to a series of bacterial strains. As they anticipated based on their previous investigations, they found a complete correlation between the peptide binding to a small fragment of bacterial DnaK and bacteria killing. The researchers also confirmed that the peptide does not bind to the mouse or human protein equivalents to DnaK, further suggesting that the peptide would not be toxic to mammals.

The investigators identified a possible binding surface for the antimicrobial peptide on an E. coli DnaK fragment. Knowledge of this binding site could lead to the development of new drugs tailored to combat E. coli. It may also be possible to develop drugs that would kill bacteria that are unresponsive to native pyrrhocoricin, but for which the DnaK structure is known.

In related ongoing studies, Otvos and his team have shown that analogs of pyrrhocoricin are able to kill clinical strains of resistant bacteria that cause urinary, gastrointestinal and respiratory-tract infections. In a mouse H. influenzae lung infection model, the researchers have shown that a pyrrhocoricin analog can dramatically reduce bacterial counts in the lungs and be administered in a non-invasive way. These studies are demonstrating that engineered antibacterial peptides can be used in a clinical setting against bacteria with resistance to existing antibiotics.


In addition to senior author Otvos, the lead author of the study is Goran Kragol, Ph.D., and co-authors are Michael A. Chattergoon, B.S., Mare Cudic, Ph.D., Barry A. Condie, B.S., and associate professor Luis J. Montaner, D.V.M., D.Phil., all of The Wistar Institute. Additional co-authors are Ralf Hoffmann, Ph.D., of Heinrich-Heine-Universität, Sandor Lovas, Ph.D., of Creighton University, Philippe Bulet, Ph.D., of Institut de Biologie Moleculaire et Cellulaire, and K. Johan Rosengren, Ph.D., of the University of Queensland.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Cente- one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

Marion Wyce | EurekAlert!
Further information:
http://www.wistar.upenn.edu),

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>