Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into insect antimicrobials point the way to novel antibiotics

09.08.2002


The emergence of antibiotic-resistant strains of bacteria has become a serious public-health concern, and, accordingly, scientists are investigating new classes of antimicrobials for their efficacy against disease-causing bacteria. One developing area of study involves antimicrobial peptides derived from insects. Recent studies have identified the protein target in bacteria of these antimicrobial peptides and suggested that the peptides are not toxic to mammalian cells including those of humans, raising the possibility that they could someday be used to develop new antibiotic drugs.

Now, in a new study of an insect-derived antimicrobial peptide called pyrrhocoricin, scientists at The Wistar Institute have identified which segments of the peptide are necessary for the killing of bacteria and which segments are involved in bacterial and mammalian cell entry. The Wistar scientists further confirmed that this antimicrobial peptide must bind to the previously identified intracellular bacterial protein target in order to kill bacteria. The research team also identified a possible binding site for the antimicrobial peptide on the target bacterial protein for the first time.

Because the stretches of the peptide that are responsible for cell entry are separate from the segments responsible for bacteria killing, the research team says that it might be possible to use an altered version of the peptide as a delivery vehicle for a variety of drugs into human cells, rather than solely as an antimicrobial. The results are published online today in the European Journal of Biochemistry.



"This study lays the groundwork for the design of a novel family of antimicrobials," says Laszlo Otvos Jr., Ph.D., associate professor at The Wistar Institute and senior author of the study. "It also suggests that these peptides could be used as a universal drug delivery vehicle, whether for new drugs or to improve the delivery of existing peptide-based drugs."

The antimicrobial peptide kills bacteria by binding to a protein target called DnaK. DnaK is a special type of protein called a heat-shock protein, responsible for correcting misshapen proteins. When the antimicrobial peptide binds to DnaK, it prevents DnaK from doing its protein-repair work, killing the bacteria.The Wistar research team studied the binding of engineered analogs of pyrrhocoricin to a series of bacterial strains. As they anticipated based on their previous investigations, they found a complete correlation between the peptide binding to a small fragment of bacterial DnaK and bacteria killing. The researchers also confirmed that the peptide does not bind to the mouse or human protein equivalents to DnaK, further suggesting that the peptide would not be toxic to mammals.

The investigators identified a possible binding surface for the antimicrobial peptide on an E. coli DnaK fragment. Knowledge of this binding site could lead to the development of new drugs tailored to combat E. coli. It may also be possible to develop drugs that would kill bacteria that are unresponsive to native pyrrhocoricin, but for which the DnaK structure is known.

In related ongoing studies, Otvos and his team have shown that analogs of pyrrhocoricin are able to kill clinical strains of resistant bacteria that cause urinary, gastrointestinal and respiratory-tract infections. In a mouse H. influenzae lung infection model, the researchers have shown that a pyrrhocoricin analog can dramatically reduce bacterial counts in the lungs and be administered in a non-invasive way. These studies are demonstrating that engineered antibacterial peptides can be used in a clinical setting against bacteria with resistance to existing antibiotics.


In addition to senior author Otvos, the lead author of the study is Goran Kragol, Ph.D., and co-authors are Michael A. Chattergoon, B.S., Mare Cudic, Ph.D., Barry A. Condie, B.S., and associate professor Luis J. Montaner, D.V.M., D.Phil., all of The Wistar Institute. Additional co-authors are Ralf Hoffmann, Ph.D., of Heinrich-Heine-Universität, Sandor Lovas, Ph.D., of Creighton University, Philippe Bulet, Ph.D., of Institut de Biologie Moleculaire et Cellulaire, and K. Johan Rosengren, Ph.D., of the University of Queensland.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Cente- one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

Marion Wyce | EurekAlert!
Further information:
http://www.wistar.upenn.edu),

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>