Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Study Shows Increased Transmission Of Drug-Resistant HIV Infection

08.08.2002


An increase in the transmission rate of drug-resistant human immunodeficiency virus (HIV), now affecting as many as one in five newly infected persons, has been discovered by researchers at the University of California, San Diego (UCSD) School of Medicine.



In a five-year, multi-center study of more than 300 patients in 10 North American cities, the investigators found that the transmission rate of drug-resistant HIV had more than doubled, resulting in impaired patient-response once anti-retroviral therapy was provided. The results are published in the August 8, 2002 issue of the New England Journal of Medicine.

According to lead author Susan Little, M.D., UCSD assistant professor of medicine, and senior author Douglas Richman, M.D., UCSD professor of medicine, resistance was noted in persons on single-drug therapy as well as those receiving potent multi-drug treatment.


"This points to the importance of routine drug-resistance tests for newly infected patients so that the most effective first-line treatment program can be initiated," said Richman, who is director of the UCSD AIDS Research Institute and the Research Center for AIDS and HIV Infection at the Veterans Affairs (VA) San Diego Health Care System.

Although past studies had estimated the transmission of drug-resistant HIV at 1 to 11 percent of newly infected patients, the new findings show the prevalence of viral mutations associated with resistance increased from 8.0 percent between 1995-98 to 22.7 percent during 1999-2000.

From May 1995 through June 2000, 377 individuals with primary HIV infection who had not yet received treatment were recruited for the study. Study subjects were predominantly non-Hispanic white men whose risk factor for HIV infection was unprotected sex with men, a group in which HIV drug resistance appears to be most prevalent, the researchers said.

Pre-treatment blood samples were analyzed to determine clinical resistance to 15 currently approved HIV drugs. In addition, the blood samples were analyzed for resistance to multi-drug regimens.

Response to treatment was then measured in 202 of the patients. Investigators looked at the length of time to viral suppression and/or the time to virologic failure, when treatment was no longer effective. Although viral suppression was demonstrated by week 24 of therapy in all but one patient, the median time to suppression was 56 days for those without the drug-resistant strain and 88 days for those with the drug-resistant form of the virus. The time to virologic failure was significantly shorter among those with drug-resistance.

In research results presented by Richman in December 2001 at the American Society for Microbiology, it was noted that more than three-quarters of HIV patients with a measurable viral load who are receiving care in the United States carry strains of the virus that are resistant to drug therapy.

In the current New England Journal of Medicine article, Little, Richman and their team said that "increases in the prevalence of drug-resistant virus among patients with established HIV infection may be associated with more frequent transmission of drug-resistant virus to newly infected persons in their community."

The authors also noted that "in both the developed and developing worlds, the treatment strategies for patients newly infected with HIV should take into account the prevalence of transmitted drug resistance."

The study was funded by the National Institutes of Health. In addition to Little and Richman, authors were Sarah Holte, Ph.D., Fred Hutchinson Cancer Research Center, and Ann C. Collier, M.D., University of Washington; Jean-Pierre Routy, M.D., McGill University Health Center, Montreal; Eric S. Daar, M.D., UCLA Medical Center; Marty Markowitz, M.D., Aaron Diamond AIDS Research Center, New York; Richard A. Koup, M.D., Vaccine Research Center, National Institutes of Health; John W. Mellors, M.D., University of Pittsburgh School of Medicine; Elizabeth Connick, M.D., University of Colorado Health Sciences Center; Brian Conway, M.D., University of British Columbia, Vancouver; Michael Kilby, M.D., University of Alabama, Birmingham; and Jeannette M. Whitcomb, Ph.D., and Nicholas S. Hellmann, M.D., ViroLogic, South San Francisco.


Media Contact:
Sue Pondrom
619-543-6164
spondrom@ucsd.edu

Sue Pondrom | EurekAlert!
Further information:
http://health.ucsd.edu/news

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>