Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex physical learning may compensate for prenatal alcohol exposure, study shows

08.08.2002


Complex physical learning may help children overcome some mental disabilities that result from prenatal alcohol consumption by their mothers, say researchers whose experiments led to increased wiring in the brains of young rats.



In their study, infant rats were exposed to alcohol during a period of brain development (especially in the cerebellum) that is similar to that of the human third trimester of pregnancy. In adulthood, the rats improved their learning skills during a 20-day regimen of complex motor training, and generated new synapses in their cerebellum.

About 0.1 percent of U.S. births involve newborns with Fetal Alcohol Syndrome, characterized by a variety of physical, mental and neurological defects that often lead to behavioral, learning and mobility problems. Ten times that many children, also exposed to alcohol before birth, may not meet the diagnostic criteria for FAS but still have behavioral and brain defects that are now classified as alcohol-related developmental disorders.


Simply not drinking during pregnancy could prevent such damage, but a 1998 survey by the Centers for Disease Control and Prevention found both increasing rates of drinking by pregnant mothers and FAS in the last 15 years.

"The disorders associated with fetal exposure to alcohol are, by far, the leading known cause of mental retardation and developmental delay in this country and most others," said study co-author William T. Greenough, Swanlund Endowed Professor of Psychology at the University of Illinois at Urbana-Champaign. "In addition to the social cost, the economic cost is hundreds of billions of dollars each year. While it is, in principle, completely possible to prevent these disorders, this has not happened, even with increased public awareness. Hence it is critical to learn how to do as much as possible to improve the outcome for those affected by fetal alcohol exposure."

The study, published in the journal Brain Research, was led by Anna Y. Klintsova, a visiting professor of psychology and associate director of the fetal alcohol research laboratory at the Beckman Institute of Advanced Science and Technology at Illinois.

In the study, experimental groups of newborn rats that were suckling the normal diet of mother’s milk were given supplements with alcohol that achieved blood alcohol levels similar to binge drinking by pregnant women in the third trimester. Previous research has shown that many neurons (Purkinje cells) in the cerebellum are permanently destroyed by alcohol during this time.

After weaning, some of the alcohol-exposed rats and a control group of unexposed rats began the training, which involved learning to navigate increasingly difficult challenges involving motor skills. For 10 days, the alcohol-exposed rats made more errors than the control rats, but all of them improved and successfully completed the training exercise.

The researchers later examined the cerebellum of all the rats, finding the expected 30 percent loss of Purkinje cells in the alcohol-exposed rats. These neurons are the only ones that send signals to nerve cells outside of the cerebellar cortex. However, Klintsova said, the surviving neurons in the alcohol-exposed rats that went through the complex learning test had about 20 percent more synapses than all of the rats that did not train.

In a follow-up experiment, not reported in this study, the researchers tested the alcohol-exposed rats in a completely new motor-skills learning test. The rats that had undergone the previous training successfully learned the new skills at a level comparable to that done by control rats. More than half of the alcohol-exposed rats that did not receive the earlier training had to be removed from the experiment; none learned the new skills during the short period of testing.

"It may be that we did not challenge them enough to be able to detect significant differences still present from alcohol exposure," Klintsova said. "But we are very encouraged by what we saw, because we found, to our pleasure, that the alcohol-exposed animals that had undergone the complex motor learning behaved not significantly worse than the control animals."

Because the brain is more plastic, more changeable, early in life, Klintsova said, "the earlier you start intervention, the more benefits a child is likely to get."

"If a diagnosis is done early enough, and parents don’t hide the fact that the mother drank during the third trimester, then a physician can explain what may be happening," she said. "Then more effort could be put into the physical activity and complex learning environment for the children."

The researchers believe that an increase in the formation of synapses, the connections of communications, by neurons in the cerebellum led to the behavioral recovery of the alcohol-exposed rats. The cerebellum is responsible for coordinating very precise components involved in movement.

"A lot of damage can be done to the motor function, but it may be possible to rehabilitate these deficits if caught early enough," Klintsova said. "The children may not become champions, but they may be able to stand on the same playing field as their peers."

The National Institutes of Health funds the research. The NIH recently awarded a new five-year grant to continue the work. The funds will be divided among Klintsova, who has accepted a faculty appointment beginning in September at the State University of New York at Binghamton; Greenough at Illinois; and co-author Charles R. Goodlett at Indiana University-Purdue University in Indianapolis. The continuing research at Illinois will focus on the brain’s capacity to make new neurons during postnatal development and adulthood as a possible resource for therapeutic intervention, said Greenough, a professor of molecular and integrative physiology and of psychiatry in the College of Medicine.


Other researchers involved in the Brain Research study were former Illinois students Carly Scamra and Melissa Hoffman, and Ruth M.A. Napper of the University of Otago Medical School in Dunedin, New Zealand.


Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>