Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex physical learning may compensate for prenatal alcohol exposure, study shows

08.08.2002


Complex physical learning may help children overcome some mental disabilities that result from prenatal alcohol consumption by their mothers, say researchers whose experiments led to increased wiring in the brains of young rats.



In their study, infant rats were exposed to alcohol during a period of brain development (especially in the cerebellum) that is similar to that of the human third trimester of pregnancy. In adulthood, the rats improved their learning skills during a 20-day regimen of complex motor training, and generated new synapses in their cerebellum.

About 0.1 percent of U.S. births involve newborns with Fetal Alcohol Syndrome, characterized by a variety of physical, mental and neurological defects that often lead to behavioral, learning and mobility problems. Ten times that many children, also exposed to alcohol before birth, may not meet the diagnostic criteria for FAS but still have behavioral and brain defects that are now classified as alcohol-related developmental disorders.


Simply not drinking during pregnancy could prevent such damage, but a 1998 survey by the Centers for Disease Control and Prevention found both increasing rates of drinking by pregnant mothers and FAS in the last 15 years.

"The disorders associated with fetal exposure to alcohol are, by far, the leading known cause of mental retardation and developmental delay in this country and most others," said study co-author William T. Greenough, Swanlund Endowed Professor of Psychology at the University of Illinois at Urbana-Champaign. "In addition to the social cost, the economic cost is hundreds of billions of dollars each year. While it is, in principle, completely possible to prevent these disorders, this has not happened, even with increased public awareness. Hence it is critical to learn how to do as much as possible to improve the outcome for those affected by fetal alcohol exposure."

The study, published in the journal Brain Research, was led by Anna Y. Klintsova, a visiting professor of psychology and associate director of the fetal alcohol research laboratory at the Beckman Institute of Advanced Science and Technology at Illinois.

In the study, experimental groups of newborn rats that were suckling the normal diet of mother’s milk were given supplements with alcohol that achieved blood alcohol levels similar to binge drinking by pregnant women in the third trimester. Previous research has shown that many neurons (Purkinje cells) in the cerebellum are permanently destroyed by alcohol during this time.

After weaning, some of the alcohol-exposed rats and a control group of unexposed rats began the training, which involved learning to navigate increasingly difficult challenges involving motor skills. For 10 days, the alcohol-exposed rats made more errors than the control rats, but all of them improved and successfully completed the training exercise.

The researchers later examined the cerebellum of all the rats, finding the expected 30 percent loss of Purkinje cells in the alcohol-exposed rats. These neurons are the only ones that send signals to nerve cells outside of the cerebellar cortex. However, Klintsova said, the surviving neurons in the alcohol-exposed rats that went through the complex learning test had about 20 percent more synapses than all of the rats that did not train.

In a follow-up experiment, not reported in this study, the researchers tested the alcohol-exposed rats in a completely new motor-skills learning test. The rats that had undergone the previous training successfully learned the new skills at a level comparable to that done by control rats. More than half of the alcohol-exposed rats that did not receive the earlier training had to be removed from the experiment; none learned the new skills during the short period of testing.

"It may be that we did not challenge them enough to be able to detect significant differences still present from alcohol exposure," Klintsova said. "But we are very encouraged by what we saw, because we found, to our pleasure, that the alcohol-exposed animals that had undergone the complex motor learning behaved not significantly worse than the control animals."

Because the brain is more plastic, more changeable, early in life, Klintsova said, "the earlier you start intervention, the more benefits a child is likely to get."

"If a diagnosis is done early enough, and parents don’t hide the fact that the mother drank during the third trimester, then a physician can explain what may be happening," she said. "Then more effort could be put into the physical activity and complex learning environment for the children."

The researchers believe that an increase in the formation of synapses, the connections of communications, by neurons in the cerebellum led to the behavioral recovery of the alcohol-exposed rats. The cerebellum is responsible for coordinating very precise components involved in movement.

"A lot of damage can be done to the motor function, but it may be possible to rehabilitate these deficits if caught early enough," Klintsova said. "The children may not become champions, but they may be able to stand on the same playing field as their peers."

The National Institutes of Health funds the research. The NIH recently awarded a new five-year grant to continue the work. The funds will be divided among Klintsova, who has accepted a faculty appointment beginning in September at the State University of New York at Binghamton; Greenough at Illinois; and co-author Charles R. Goodlett at Indiana University-Purdue University in Indianapolis. The continuing research at Illinois will focus on the brain’s capacity to make new neurons during postnatal development and adulthood as a possible resource for therapeutic intervention, said Greenough, a professor of molecular and integrative physiology and of psychiatry in the College of Medicine.


Other researchers involved in the Brain Research study were former Illinois students Carly Scamra and Melissa Hoffman, and Ruth M.A. Napper of the University of Otago Medical School in Dunedin, New Zealand.


Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>