Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioengineered, rhythmically beating heart muscle could aid cardiac research

05.08.2002


The collaboration between cardiologist and orthopedist may at first seem novel, if not odd. But just such an interdisciplinary connection at the University of North Carolina at Chapel Hill has yielded potentially useful fruit: a bioengineered, rhythmically beating experimental model of heart muscle.



The new model system is a bioartificial trabeculum, or BAT. Trabecula are thin sections of cardiac tissue within the inner surface of the heart’s main pumping chambers. Although still some distance away from any human clinical application, the model could prove a valuable scientific tool for exploring cardiac disease, including electrical and mechanical disturbances of the heart.

Details of the heart tissue model are being presented Monday (Aug. 5) to the World Congress of Biomechanics in Calgary, Canada.


"The purpose of our study was to explore the possibility that one could take isolated heart cells and under proper conditions allow them to coalesce and attach to each other in a functional way, thereby creating an artificial tissue," said cardiologist and co-developer Dr. Wayne E. Cascio, associate professor of medicine at UNC.

Cascio said the idea for the BAT originated with a biomedical engineering lecture by Dr. Albert J. Banes, UNC professor of orthopedics. Banes had spoken about his work on the development artificial tendons. Through a company he founded 18 years ago, Flexcell International in Hillsborough, N.C., Banes had developed a special tissue plate that has proven a useful framework in which cells in a liquid collagen gel could remodel on their own to form a more tissue-like structure. Other work elsewhere has involved rigid structures or lattices upon which cells attach to and grow.

"The fundamental basis for that company was a flexible bottom culture plate with the thought that all cells in tissues in our body are subjected to some forms of mechanical load, cyclic tension being one of them," Banes said. "We thought it would be better to grow cells in a dynamic environment, on a flexible substrate. We could then stretch the tissue cells in a certain way to simulate the effects of mechanical loads on tendon, muscle bone, ligament, and cartilage and also add the shear stress that occurs during fluid flow in blood vessels. Dr. Cascio very astutely thought we could grow cardiac myocytes and make a cardiac muscle tissue-like material to test in culture. And that’s where the collaboration began." In developing the tissue model, Cascio and his laboratory assistant Joseph Brackhan, isolated cardiac myocytes from one-day-old rats.

These were mixed in a solution of collagen and serum and allowed to gel under incubation in a Flexcell Tissue Train Plate. (See link to illustration at bottom of release.) The tissue train plates have two nylon tethers at opposite ends of each well and a flexible silicon rubber bottom. After four days in culture, the heart cells migrated toward the center of the gel to form a dense cord of tissue that extended between the two tethers.

The tissue strand rhythmically contracts at 100 beats per minute, easily observed with a low-power microscope. Tests reveal striations characteristic of cardiac tissue and cell-to-cell coupling also characteristic of cardiac tissue.

The team’s long-term goals are to apply this system to study the effects of mechanical loading on normal cardiac physiology and to develop a model system for the study of cardiac illnesses such as congestive heart failure.

"In my lab, we’re specifically interested in generating cardiac myocytes with certain electrical or contractile properties by manipulating the genetics of the cells and then re-forming them into functional tissue to assess their properties," Cascio said. He added that some researchers might view this model as a means to generate tissue patches that might be applied to the surface of the heart or to incorporate into a diseased heart - cardiomyoplasty, a kind of cardiac plastic surgery. "But this would be a very early stage of such an approach," he said.


Note: Contact Cascio at (919) 843-5217 or wcascio@med.unc.edu.
Contact Banes at (919) 966-2566 or Ajbvault@med.unc.edu.

To view an illustration of the tissue model, go to www.unc.edu/news/newsserv/pics/bioartificalheart.jpg

Leslie H. Lang | EurekAlert!
Further information:
http://www.unc.edu/news/newsserv/pics/bioartificalheart.jpg
http://www.med.unc.edu/

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>