Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioengineered, rhythmically beating heart muscle could aid cardiac research

05.08.2002


The collaboration between cardiologist and orthopedist may at first seem novel, if not odd. But just such an interdisciplinary connection at the University of North Carolina at Chapel Hill has yielded potentially useful fruit: a bioengineered, rhythmically beating experimental model of heart muscle.



The new model system is a bioartificial trabeculum, or BAT. Trabecula are thin sections of cardiac tissue within the inner surface of the heart’s main pumping chambers. Although still some distance away from any human clinical application, the model could prove a valuable scientific tool for exploring cardiac disease, including electrical and mechanical disturbances of the heart.

Details of the heart tissue model are being presented Monday (Aug. 5) to the World Congress of Biomechanics in Calgary, Canada.


"The purpose of our study was to explore the possibility that one could take isolated heart cells and under proper conditions allow them to coalesce and attach to each other in a functional way, thereby creating an artificial tissue," said cardiologist and co-developer Dr. Wayne E. Cascio, associate professor of medicine at UNC.

Cascio said the idea for the BAT originated with a biomedical engineering lecture by Dr. Albert J. Banes, UNC professor of orthopedics. Banes had spoken about his work on the development artificial tendons. Through a company he founded 18 years ago, Flexcell International in Hillsborough, N.C., Banes had developed a special tissue plate that has proven a useful framework in which cells in a liquid collagen gel could remodel on their own to form a more tissue-like structure. Other work elsewhere has involved rigid structures or lattices upon which cells attach to and grow.

"The fundamental basis for that company was a flexible bottom culture plate with the thought that all cells in tissues in our body are subjected to some forms of mechanical load, cyclic tension being one of them," Banes said. "We thought it would be better to grow cells in a dynamic environment, on a flexible substrate. We could then stretch the tissue cells in a certain way to simulate the effects of mechanical loads on tendon, muscle bone, ligament, and cartilage and also add the shear stress that occurs during fluid flow in blood vessels. Dr. Cascio very astutely thought we could grow cardiac myocytes and make a cardiac muscle tissue-like material to test in culture. And that’s where the collaboration began." In developing the tissue model, Cascio and his laboratory assistant Joseph Brackhan, isolated cardiac myocytes from one-day-old rats.

These were mixed in a solution of collagen and serum and allowed to gel under incubation in a Flexcell Tissue Train Plate. (See link to illustration at bottom of release.) The tissue train plates have two nylon tethers at opposite ends of each well and a flexible silicon rubber bottom. After four days in culture, the heart cells migrated toward the center of the gel to form a dense cord of tissue that extended between the two tethers.

The tissue strand rhythmically contracts at 100 beats per minute, easily observed with a low-power microscope. Tests reveal striations characteristic of cardiac tissue and cell-to-cell coupling also characteristic of cardiac tissue.

The team’s long-term goals are to apply this system to study the effects of mechanical loading on normal cardiac physiology and to develop a model system for the study of cardiac illnesses such as congestive heart failure.

"In my lab, we’re specifically interested in generating cardiac myocytes with certain electrical or contractile properties by manipulating the genetics of the cells and then re-forming them into functional tissue to assess their properties," Cascio said. He added that some researchers might view this model as a means to generate tissue patches that might be applied to the surface of the heart or to incorporate into a diseased heart - cardiomyoplasty, a kind of cardiac plastic surgery. "But this would be a very early stage of such an approach," he said.


Note: Contact Cascio at (919) 843-5217 or wcascio@med.unc.edu.
Contact Banes at (919) 966-2566 or Ajbvault@med.unc.edu.

To view an illustration of the tissue model, go to www.unc.edu/news/newsserv/pics/bioartificalheart.jpg

Leslie H. Lang | EurekAlert!
Further information:
http://www.unc.edu/news/newsserv/pics/bioartificalheart.jpg
http://www.med.unc.edu/

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>