Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioengineered, rhythmically beating heart muscle could aid cardiac research

05.08.2002


The collaboration between cardiologist and orthopedist may at first seem novel, if not odd. But just such an interdisciplinary connection at the University of North Carolina at Chapel Hill has yielded potentially useful fruit: a bioengineered, rhythmically beating experimental model of heart muscle.



The new model system is a bioartificial trabeculum, or BAT. Trabecula are thin sections of cardiac tissue within the inner surface of the heart’s main pumping chambers. Although still some distance away from any human clinical application, the model could prove a valuable scientific tool for exploring cardiac disease, including electrical and mechanical disturbances of the heart.

Details of the heart tissue model are being presented Monday (Aug. 5) to the World Congress of Biomechanics in Calgary, Canada.


"The purpose of our study was to explore the possibility that one could take isolated heart cells and under proper conditions allow them to coalesce and attach to each other in a functional way, thereby creating an artificial tissue," said cardiologist and co-developer Dr. Wayne E. Cascio, associate professor of medicine at UNC.

Cascio said the idea for the BAT originated with a biomedical engineering lecture by Dr. Albert J. Banes, UNC professor of orthopedics. Banes had spoken about his work on the development artificial tendons. Through a company he founded 18 years ago, Flexcell International in Hillsborough, N.C., Banes had developed a special tissue plate that has proven a useful framework in which cells in a liquid collagen gel could remodel on their own to form a more tissue-like structure. Other work elsewhere has involved rigid structures or lattices upon which cells attach to and grow.

"The fundamental basis for that company was a flexible bottom culture plate with the thought that all cells in tissues in our body are subjected to some forms of mechanical load, cyclic tension being one of them," Banes said. "We thought it would be better to grow cells in a dynamic environment, on a flexible substrate. We could then stretch the tissue cells in a certain way to simulate the effects of mechanical loads on tendon, muscle bone, ligament, and cartilage and also add the shear stress that occurs during fluid flow in blood vessels. Dr. Cascio very astutely thought we could grow cardiac myocytes and make a cardiac muscle tissue-like material to test in culture. And that’s where the collaboration began." In developing the tissue model, Cascio and his laboratory assistant Joseph Brackhan, isolated cardiac myocytes from one-day-old rats.

These were mixed in a solution of collagen and serum and allowed to gel under incubation in a Flexcell Tissue Train Plate. (See link to illustration at bottom of release.) The tissue train plates have two nylon tethers at opposite ends of each well and a flexible silicon rubber bottom. After four days in culture, the heart cells migrated toward the center of the gel to form a dense cord of tissue that extended between the two tethers.

The tissue strand rhythmically contracts at 100 beats per minute, easily observed with a low-power microscope. Tests reveal striations characteristic of cardiac tissue and cell-to-cell coupling also characteristic of cardiac tissue.

The team’s long-term goals are to apply this system to study the effects of mechanical loading on normal cardiac physiology and to develop a model system for the study of cardiac illnesses such as congestive heart failure.

"In my lab, we’re specifically interested in generating cardiac myocytes with certain electrical or contractile properties by manipulating the genetics of the cells and then re-forming them into functional tissue to assess their properties," Cascio said. He added that some researchers might view this model as a means to generate tissue patches that might be applied to the surface of the heart or to incorporate into a diseased heart - cardiomyoplasty, a kind of cardiac plastic surgery. "But this would be a very early stage of such an approach," he said.


Note: Contact Cascio at (919) 843-5217 or wcascio@med.unc.edu.
Contact Banes at (919) 966-2566 or Ajbvault@med.unc.edu.

To view an illustration of the tissue model, go to www.unc.edu/news/newsserv/pics/bioartificalheart.jpg

Leslie H. Lang | EurekAlert!
Further information:
http://www.unc.edu/news/newsserv/pics/bioartificalheart.jpg
http://www.med.unc.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>