Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioengineered, rhythmically beating heart muscle could aid cardiac research

05.08.2002


The collaboration between cardiologist and orthopedist may at first seem novel, if not odd. But just such an interdisciplinary connection at the University of North Carolina at Chapel Hill has yielded potentially useful fruit: a bioengineered, rhythmically beating experimental model of heart muscle.



The new model system is a bioartificial trabeculum, or BAT. Trabecula are thin sections of cardiac tissue within the inner surface of the heart’s main pumping chambers. Although still some distance away from any human clinical application, the model could prove a valuable scientific tool for exploring cardiac disease, including electrical and mechanical disturbances of the heart.

Details of the heart tissue model are being presented Monday (Aug. 5) to the World Congress of Biomechanics in Calgary, Canada.


"The purpose of our study was to explore the possibility that one could take isolated heart cells and under proper conditions allow them to coalesce and attach to each other in a functional way, thereby creating an artificial tissue," said cardiologist and co-developer Dr. Wayne E. Cascio, associate professor of medicine at UNC.

Cascio said the idea for the BAT originated with a biomedical engineering lecture by Dr. Albert J. Banes, UNC professor of orthopedics. Banes had spoken about his work on the development artificial tendons. Through a company he founded 18 years ago, Flexcell International in Hillsborough, N.C., Banes had developed a special tissue plate that has proven a useful framework in which cells in a liquid collagen gel could remodel on their own to form a more tissue-like structure. Other work elsewhere has involved rigid structures or lattices upon which cells attach to and grow.

"The fundamental basis for that company was a flexible bottom culture plate with the thought that all cells in tissues in our body are subjected to some forms of mechanical load, cyclic tension being one of them," Banes said. "We thought it would be better to grow cells in a dynamic environment, on a flexible substrate. We could then stretch the tissue cells in a certain way to simulate the effects of mechanical loads on tendon, muscle bone, ligament, and cartilage and also add the shear stress that occurs during fluid flow in blood vessels. Dr. Cascio very astutely thought we could grow cardiac myocytes and make a cardiac muscle tissue-like material to test in culture. And that’s where the collaboration began." In developing the tissue model, Cascio and his laboratory assistant Joseph Brackhan, isolated cardiac myocytes from one-day-old rats.

These were mixed in a solution of collagen and serum and allowed to gel under incubation in a Flexcell Tissue Train Plate. (See link to illustration at bottom of release.) The tissue train plates have two nylon tethers at opposite ends of each well and a flexible silicon rubber bottom. After four days in culture, the heart cells migrated toward the center of the gel to form a dense cord of tissue that extended between the two tethers.

The tissue strand rhythmically contracts at 100 beats per minute, easily observed with a low-power microscope. Tests reveal striations characteristic of cardiac tissue and cell-to-cell coupling also characteristic of cardiac tissue.

The team’s long-term goals are to apply this system to study the effects of mechanical loading on normal cardiac physiology and to develop a model system for the study of cardiac illnesses such as congestive heart failure.

"In my lab, we’re specifically interested in generating cardiac myocytes with certain electrical or contractile properties by manipulating the genetics of the cells and then re-forming them into functional tissue to assess their properties," Cascio said. He added that some researchers might view this model as a means to generate tissue patches that might be applied to the surface of the heart or to incorporate into a diseased heart - cardiomyoplasty, a kind of cardiac plastic surgery. "But this would be a very early stage of such an approach," he said.


Note: Contact Cascio at (919) 843-5217 or wcascio@med.unc.edu.
Contact Banes at (919) 966-2566 or Ajbvault@med.unc.edu.

To view an illustration of the tissue model, go to www.unc.edu/news/newsserv/pics/bioartificalheart.jpg

Leslie H. Lang | EurekAlert!
Further information:
http://www.unc.edu/news/newsserv/pics/bioartificalheart.jpg
http://www.med.unc.edu/

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>