Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clemson researchers find bacteria fighter that does not promote bacterial resistance

02.08.2002


Health officials fear that lifesaving drugs can lose their effectiveness when overused. They are especially concerned about anti-microbial additives, found in everything from kitchen cleaners to face soaps, because the bacteria they try to kill are becoming resistant. Clemson University scientists have found a new bacteria fighter that does not promote bacterial resistance.

Food microbiologist Susan Barefoot and doctoral student researcher Priya Ratnam uncovered a new acne treatment that attacks bacteria unlike conventional commercial compounds. They have signed an agreement with a company to explore moving their find from lab to marketplace.

The team made their discovery as they searched for proteins that act as natural food preservatives. Called a bacteriocin, the protein is a tiny bit of antibiotic-like matter produced by the bacteria used to make Swiss cheese.



"It was really serendipity," Barefoot said. "We were looking for a bacteriocin from a close relative of the Swiss cheese bacteria. We found one, but it did not work as a new food preservative. After some discussion, we wondered if the bacteriocin would be effective against acne bacteria which are more distant relatives to the Swiss cheese bacteria."

The researchers have contracted with ImmuCell Corporation, a Portland, Maine -based biotechnology company, to jointly develop their work. ImmuCell produces innovative and proprietary products that improve animal health and productivity in the dairy and beef industry.

ImmuCell also is developing veterinary, environmental and skin-cleaning uses of the anti-microbial Nisin, another bacteriocin.

"ImmuCell is very excited about the potential for the anti-microbial Nisin to prevent acne, and together with Dr. Barefoot’s new anti-microbial, Jenseniin P, we have the potential to make a very potent product," said Richard T. Coughlin, the firm’s senior director of research and development. "Such a product could reduce the use of conventional antibiotics to treat non-life-threatening diseases and the rise in antibiotics resistant bacteria."

Through the Greenville Hospital System-Clemson University Biomedical Cooperative, Barefoot secured acne samples from dermatologists Eric Baker and Patricia Westmoreland. The Clemson researchers then isolated 150 acne bacteria to test the bacteriocin’s effectiveness.

"The acne bacteria was controlled in every single test," said Barefoot. "Every strain, every culture, two different testing methods -- all had the same results."

Scientific investigators do not expect 100-percent success rates, so Barefoot and her colleagues were somewhat incredulous and cautious about their findings.

"We must understand how it works and develop a method to produce enough bacteriocin for further testing," she said, adding that it is comparable to generating 55 gallons of material to collect a tiny straight pin of usable product.

The Clemson-based S.C. Agriculture and Forestry Research System and the Greenville Hospital System-Clemson University Biomedical Cooperative provide funding for the research.

Peter Kent | EurekAlert!
Further information:
http://www.clemson.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>