Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clemson researchers find bacteria fighter that does not promote bacterial resistance

02.08.2002


Health officials fear that lifesaving drugs can lose their effectiveness when overused. They are especially concerned about anti-microbial additives, found in everything from kitchen cleaners to face soaps, because the bacteria they try to kill are becoming resistant. Clemson University scientists have found a new bacteria fighter that does not promote bacterial resistance.

Food microbiologist Susan Barefoot and doctoral student researcher Priya Ratnam uncovered a new acne treatment that attacks bacteria unlike conventional commercial compounds. They have signed an agreement with a company to explore moving their find from lab to marketplace.

The team made their discovery as they searched for proteins that act as natural food preservatives. Called a bacteriocin, the protein is a tiny bit of antibiotic-like matter produced by the bacteria used to make Swiss cheese.



"It was really serendipity," Barefoot said. "We were looking for a bacteriocin from a close relative of the Swiss cheese bacteria. We found one, but it did not work as a new food preservative. After some discussion, we wondered if the bacteriocin would be effective against acne bacteria which are more distant relatives to the Swiss cheese bacteria."

The researchers have contracted with ImmuCell Corporation, a Portland, Maine -based biotechnology company, to jointly develop their work. ImmuCell produces innovative and proprietary products that improve animal health and productivity in the dairy and beef industry.

ImmuCell also is developing veterinary, environmental and skin-cleaning uses of the anti-microbial Nisin, another bacteriocin.

"ImmuCell is very excited about the potential for the anti-microbial Nisin to prevent acne, and together with Dr. Barefoot’s new anti-microbial, Jenseniin P, we have the potential to make a very potent product," said Richard T. Coughlin, the firm’s senior director of research and development. "Such a product could reduce the use of conventional antibiotics to treat non-life-threatening diseases and the rise in antibiotics resistant bacteria."

Through the Greenville Hospital System-Clemson University Biomedical Cooperative, Barefoot secured acne samples from dermatologists Eric Baker and Patricia Westmoreland. The Clemson researchers then isolated 150 acne bacteria to test the bacteriocin’s effectiveness.

"The acne bacteria was controlled in every single test," said Barefoot. "Every strain, every culture, two different testing methods -- all had the same results."

Scientific investigators do not expect 100-percent success rates, so Barefoot and her colleagues were somewhat incredulous and cautious about their findings.

"We must understand how it works and develop a method to produce enough bacteriocin for further testing," she said, adding that it is comparable to generating 55 gallons of material to collect a tiny straight pin of usable product.

The Clemson-based S.C. Agriculture and Forestry Research System and the Greenville Hospital System-Clemson University Biomedical Cooperative provide funding for the research.

Peter Kent | EurekAlert!
Further information:
http://www.clemson.edu/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>