Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One gene, two eye diseases?

02.08.2002


New macular degeneration link found



Scientists at the University of Michigan Kellogg Eye Center have come a step closer to understanding the genetics of macular degeneration, a disease of the retina that affects 13 million Americans, and causes the loss of central vision.

Research scientist Radha Ayyagari, Ph.D., has found that a gene associated with one retinal disease, retinitis pigmentosa, also causes a form of macular degeneration. In the August issue of Genomics, Ayyagari reports that the gene RPGR has a direct link to a form of early-onset macular degeneration that primarily affects males.


The finding is important because it will ultimately help scientists understand how macular degeneration progresses, and it raises an intriguing question: How can a single gene cause two very different eye diseases, each affecting a different segment of vision?

Ayyagari’s study marks the first time any scientist has mapped a macular degeneration gene to the X chromosome.

Macular degeneration causes the loss of central vision that is needed for such activities as reading and driving. The peripheral or side vision is generally not affected. Retinitis pigmentosa (RP) first affects peripheral and night vision and eventually leads to total blindness. There is no cure for either disease.

"Our latest findings are exciting because they will help scientists understand how this gene works and how a single mutation causes macular degeneration," says Ayyagari. She observes that other scientists, including Kellogg’s Anand Swaroop, Ph.D., have studied RPGR extensively and have discovered a large number of mutations that lead to retinal diseases, including RP.

Now, with the new discovery, researchers may gain a more complete understanding of the mechanisms that protect or destroy central and peripheral vision.

Ayyagari discovered the gene’s role in macular degeneration in her study of ten males, all from the same family, who had the early-onset form of the disease. Only one of the ten had some damage to peripheral vision (in addition to having macular degeneration) that is associated with RP. The men were affected at an early age--as teens or young adults--rather than at the typical age of 60 or older.

According to Ayyagari, "As we learn more about early-onset macular degeneration, we are certain to understand more about age-related macular degeneration." She explains that by studying the course of the disease in families with different ages of onset, researchers may find common features or genetic clues that apply to both forms of macular degeneration.

Ayyagari notes that the patients in the study had a form of macular degeneration that is similar to the most prevalent form of the disease: dry age-related macular degeneration.

The Kellogg scientist also describes the form of macular degeneration in the study as X-linked, meaning the gene is carried on the X chromosome. Because men have only one X chromosome (paired with a Y), they have a 50 percent chance of inheriting any such mutation carried by their mothers. Because women have two X chromosomes, one defective gene is not sufficient to cause the disease; instead women serve as carriers, passing the bad gene to sons, who then may develop macular degeneration.

In the Kellogg study, twelve female family members known to carry the RPGR gene were examined. None of the women had any abnormal loss of visual acuity. Ayyagari points out that not all forms of macular degeneration are X-linked; in the general population women are as likely as men to be affected.

The study also revealed that the mutation for macular degeneration in the RPGR gene may have one of two characteristics: the defective gene may be shorter than the healthy gene, or it may generate an entirely new protein.

Ayyagari’s next steps are to learn more about the nature of the mutation, and then to design studies that could one day lead to treatments for macular degeneration. For example, if the gene is found to create a new protein, scientists could look for ways to block it from interfering with other proteins in the retina, or, alternatively, to promote the action of necessary proteins.

Ayyagari is the primary author of the paper published in Genomics. Among the other authors is Paul A. Sieving, M.D., Ph.D., Director of the National Eye Institute (NEI). Before his appointment to the NEI, Sieving was a physician and researcher at the U-M Kellogg Eye Center. For the study, he characterized the clinical characteristics of the family over a ten-year period. In addition, Kellogg associate professor Julia E. Richards, Ph.D., played a key role in mapping the gene during the early part of the study.

Betsy Nisbet | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>