Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


One gene, two eye diseases?


New macular degeneration link found

Scientists at the University of Michigan Kellogg Eye Center have come a step closer to understanding the genetics of macular degeneration, a disease of the retina that affects 13 million Americans, and causes the loss of central vision.

Research scientist Radha Ayyagari, Ph.D., has found that a gene associated with one retinal disease, retinitis pigmentosa, also causes a form of macular degeneration. In the August issue of Genomics, Ayyagari reports that the gene RPGR has a direct link to a form of early-onset macular degeneration that primarily affects males.

The finding is important because it will ultimately help scientists understand how macular degeneration progresses, and it raises an intriguing question: How can a single gene cause two very different eye diseases, each affecting a different segment of vision?

Ayyagari’s study marks the first time any scientist has mapped a macular degeneration gene to the X chromosome.

Macular degeneration causes the loss of central vision that is needed for such activities as reading and driving. The peripheral or side vision is generally not affected. Retinitis pigmentosa (RP) first affects peripheral and night vision and eventually leads to total blindness. There is no cure for either disease.

"Our latest findings are exciting because they will help scientists understand how this gene works and how a single mutation causes macular degeneration," says Ayyagari. She observes that other scientists, including Kellogg’s Anand Swaroop, Ph.D., have studied RPGR extensively and have discovered a large number of mutations that lead to retinal diseases, including RP.

Now, with the new discovery, researchers may gain a more complete understanding of the mechanisms that protect or destroy central and peripheral vision.

Ayyagari discovered the gene’s role in macular degeneration in her study of ten males, all from the same family, who had the early-onset form of the disease. Only one of the ten had some damage to peripheral vision (in addition to having macular degeneration) that is associated with RP. The men were affected at an early age--as teens or young adults--rather than at the typical age of 60 or older.

According to Ayyagari, "As we learn more about early-onset macular degeneration, we are certain to understand more about age-related macular degeneration." She explains that by studying the course of the disease in families with different ages of onset, researchers may find common features or genetic clues that apply to both forms of macular degeneration.

Ayyagari notes that the patients in the study had a form of macular degeneration that is similar to the most prevalent form of the disease: dry age-related macular degeneration.

The Kellogg scientist also describes the form of macular degeneration in the study as X-linked, meaning the gene is carried on the X chromosome. Because men have only one X chromosome (paired with a Y), they have a 50 percent chance of inheriting any such mutation carried by their mothers. Because women have two X chromosomes, one defective gene is not sufficient to cause the disease; instead women serve as carriers, passing the bad gene to sons, who then may develop macular degeneration.

In the Kellogg study, twelve female family members known to carry the RPGR gene were examined. None of the women had any abnormal loss of visual acuity. Ayyagari points out that not all forms of macular degeneration are X-linked; in the general population women are as likely as men to be affected.

The study also revealed that the mutation for macular degeneration in the RPGR gene may have one of two characteristics: the defective gene may be shorter than the healthy gene, or it may generate an entirely new protein.

Ayyagari’s next steps are to learn more about the nature of the mutation, and then to design studies that could one day lead to treatments for macular degeneration. For example, if the gene is found to create a new protein, scientists could look for ways to block it from interfering with other proteins in the retina, or, alternatively, to promote the action of necessary proteins.

Ayyagari is the primary author of the paper published in Genomics. Among the other authors is Paul A. Sieving, M.D., Ph.D., Director of the National Eye Institute (NEI). Before his appointment to the NEI, Sieving was a physician and researcher at the U-M Kellogg Eye Center. For the study, he characterized the clinical characteristics of the family over a ten-year period. In addition, Kellogg associate professor Julia E. Richards, Ph.D., played a key role in mapping the gene during the early part of the study.

Betsy Nisbet | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Scientists invented method of catching bacteria with 'photonic hook'

20.03.2018 | Physics and Astronomy

Next Generation Cryptography

20.03.2018 | Information Technology

Science & Research
Overview of more VideoLinks >>>