Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new analysis suggests that schizophrenia may be caused by an interaction of genes and viruses in glia cells

29.07.2002


A report in the open access journal BMC Psychiatry presents a new hypothesis that may explain the causes of the psychiatric disease, schizophrenia. The hypothesis hinges on glia, a special type of cell, which is important for the maintenance of the connections between brain cells. By re-examining previously published research the authors suggest that schizophrenia may be caused by a combination of defective genes, which result in deficiencies of a variety of growth factors in glia, and infection by viruses, which may further weaken the glia. They conclude that this "weakening" of glia may result in the breakdown of connections between different brain cells leading to the development of schizophrenia.



Schizophrenia is a severe disabling psychiatric disease, which affects approximately 1 percent of the population. People with schizophrenia often suffer terrifying symptoms such as hearing internal voices, feelings of extreme paranoia and an inability to distinguish reality from fantasy. It is clear that schizophrenia has a strong genetic component, however analysis of individual genes alone will not give us a full understanding the causes of schizophrenia.

Irving Gottesman, one of the authors of this paper and originator of the now widely accepted polygenic model of schizophrenia explains,


"The investigation of individual genes in isolation has its limitations since virtually all important biological phenomena, from normal brain functioning to schizophrenia, are the result of complex systems. What is needed is a systems approach for understanding the development of schizophrenia."

This insight motivated Gottesman, and his colleagues Hans Moises and Tomas Zoega, to apply such an approach to previously published results of schizophrenia research.

Human brains are made up of two main types of cells, nerve cells, which carry electrical impulses around the brain and glia, which are important for the normal development of the brain in the young and the maintenance of nerve connections in adults. The authors argue that many of the genes implicated in the development of schizophrenia code for factors involved in the development of glia cells. In addition they hypothesize that some viral infections may cause additional weakening of glial cells, which in turn may lead to the disruption of brain cell connections and the development of schizophrenia.

"Epidemiological data indicate that all humans must harbor viruses in the glial cells of their brains, and since reproduction is a necessity for these viruses to survive, it seems reasonable to presume that they are reproducing at low levels in glial cells and that this results in an additional weakening of glial functioning", explains Moises.

This new provocative hypothesis bridges the gap between several previously unrelated schizophrenia hypotheses, most notably the genetic, the neurodevelopmental and the virus hypotheses, thereby providing a unifying explanation for the development of schizophrenia. It is hoped that by testing this hypothesis in the laboratory, researchers will come up with new ways of treating this debilitating brain disease.

The new hypothesis is freely available in the peer-reviewed open access journal BMC Psychiatry

Gordon Fletcher | BioMed Central Limited
Further information:
http://www.biomedcentral.com/1471-244X/2/8/

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>