Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new analysis suggests that schizophrenia may be caused by an interaction of genes and viruses in glia cells

29.07.2002


A report in the open access journal BMC Psychiatry presents a new hypothesis that may explain the causes of the psychiatric disease, schizophrenia. The hypothesis hinges on glia, a special type of cell, which is important for the maintenance of the connections between brain cells. By re-examining previously published research the authors suggest that schizophrenia may be caused by a combination of defective genes, which result in deficiencies of a variety of growth factors in glia, and infection by viruses, which may further weaken the glia. They conclude that this "weakening" of glia may result in the breakdown of connections between different brain cells leading to the development of schizophrenia.



Schizophrenia is a severe disabling psychiatric disease, which affects approximately 1 percent of the population. People with schizophrenia often suffer terrifying symptoms such as hearing internal voices, feelings of extreme paranoia and an inability to distinguish reality from fantasy. It is clear that schizophrenia has a strong genetic component, however analysis of individual genes alone will not give us a full understanding the causes of schizophrenia.

Irving Gottesman, one of the authors of this paper and originator of the now widely accepted polygenic model of schizophrenia explains,


"The investigation of individual genes in isolation has its limitations since virtually all important biological phenomena, from normal brain functioning to schizophrenia, are the result of complex systems. What is needed is a systems approach for understanding the development of schizophrenia."

This insight motivated Gottesman, and his colleagues Hans Moises and Tomas Zoega, to apply such an approach to previously published results of schizophrenia research.

Human brains are made up of two main types of cells, nerve cells, which carry electrical impulses around the brain and glia, which are important for the normal development of the brain in the young and the maintenance of nerve connections in adults. The authors argue that many of the genes implicated in the development of schizophrenia code for factors involved in the development of glia cells. In addition they hypothesize that some viral infections may cause additional weakening of glial cells, which in turn may lead to the disruption of brain cell connections and the development of schizophrenia.

"Epidemiological data indicate that all humans must harbor viruses in the glial cells of their brains, and since reproduction is a necessity for these viruses to survive, it seems reasonable to presume that they are reproducing at low levels in glial cells and that this results in an additional weakening of glial functioning", explains Moises.

This new provocative hypothesis bridges the gap between several previously unrelated schizophrenia hypotheses, most notably the genetic, the neurodevelopmental and the virus hypotheses, thereby providing a unifying explanation for the development of schizophrenia. It is hoped that by testing this hypothesis in the laboratory, researchers will come up with new ways of treating this debilitating brain disease.

The new hypothesis is freely available in the peer-reviewed open access journal BMC Psychiatry

Gordon Fletcher | BioMed Central Limited
Further information:
http://www.biomedcentral.com/1471-244X/2/8/

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>