Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Antioxidant Protects Islet Cells Used in Transplants for Diabetes


A synthetic antioxidant developed by researchers at National Jewish Medical and Research Center improves the survival of islet cells used in transplants for diabetes. The findings, reported in the August issue of the journal Diabetes by researchers at the University of Pittsburgh, could help overcome a significant drawback of the "Edmonton Protocol," a promising treatment for diabetes.

"The antioxidant neutralizes the harmful free radicals generated when islet cells are isolated from the pancreas," said senior author Jon Piganelli, Ph.D., assistant professor of Pediatrics at the Diabetes Institute, Children’s Hospital of Pittsburgh, and the University of Pittsburgh School of Medicine. "More of the islet cells survived in culture. And when we transplanted islet cells into diabetic, immunodeficient mice, it took fewer of the antioxidant-treated islet cells to normalize their blood sugar."

In type 1 diabetes, a person’s immune system mistakenly attacks and destroys islet cells that secrete insulin necessary for the metabolism of sugar. Many diabetes patients take insulin shots to make up for the lost islet cells. In 2000, researchers from Edmonton, Alberta, reported new techniques that have made islet-cell transplantation a promising option for patients with type 1 diabetes. It allows patients to produce their own insulin. Patients have to take immunosuppressive drugs to prevent rejection of the transplants, but they maintain better control of their insulin levels, thus reducing the chances of future complications. They also avoid the daily insulin injections. Clinical trials of the "Edmonton protocol" are being conducted at several medical centers around the nation.

One drawback to the Edmonton protocol is that pancreata from at least two donors are needed to supply enough islet cells for one successful transplant. Many cells die during isolation and shortly after transplantation. Since islet cells also rapidly die in culture, surgeons are forced to transplant the cells immediately after they have been isolated. This prevents physicians from taking several steps that could improve the likelihood of a successful transplant. Isolation of the islet cells from the pancreas stresses them, leading to inflammation and islet-cell death. Highly reactive free-radical molecules contribute to this stress. Dr. Piganelli and his colleagues reasoned that an antioxidant compound might help islet cells survive and improve transplant success by neutralizing the free radicals.

The researchers used two synthetic antioxidants developed several years earlier by Dr. James Crapo, M.D., Chairman of the Department of Medicine at National Jewish, and his colleagues. The antioxidants, dubbed AEOL10113 and AEOL10150, mimic the naturally occurring antioxidant superoxide dismutase, but are effective against a wider range of oxygen radicals and last longer in the body. Now licensed by Incara Pharmaceuticals Corporation, they have shown promise in preventing damage to cells caused by stroke and radiation therapy for cancer. Earlier this year, Dr. Piganelli and his colleagues showed that the antioxidants could prevent the development of type 1 diabetes in mice when given T cells that normally causes the disease. (Press release)

"We are excited that these synthetic antioxidants are protecting cells in such a wide range of hazardous conditions," said Dr. Crapo.

Islet-cell loss was cut in half over a six-day period, from 60% to 30%, when the antioxidants were applied during isolation of the islet cells. The antioxidants also improved the effectiveness of the islet-cell transplants. When large amounts of islet cells (700-1,000 islet equivalents) were transplanted into six diabetic mice, all the animals became healthy. But when smaller amounts of islet cells (200-220 islet equivalents) were transplanted into nine diabetic mice, half the mice who got untreated islet cells remained diabetic while all the animals with antioxidant-treated islet cells returned to full health.

"The antioxidant-treated cells are healthier when they are transplanted into the mice and survive better after the transplant," said Dr. Piganelli. "We think it may be worthwhile to use the antioxidant during preservation of the pancreas, before the isolation begins, and after transplantation."

William Allstetter | EurekAlert
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>