Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antioxidant Protects Islet Cells Used in Transplants for Diabetes

26.07.2002

A synthetic antioxidant developed by researchers at National Jewish Medical and Research Center improves the survival of islet cells used in transplants for diabetes. The findings, reported in the August issue of the journal Diabetes by researchers at the University of Pittsburgh, could help overcome a significant drawback of the "Edmonton Protocol," a promising treatment for diabetes.

"The antioxidant neutralizes the harmful free radicals generated when islet cells are isolated from the pancreas," said senior author Jon Piganelli, Ph.D., assistant professor of Pediatrics at the Diabetes Institute, Children’s Hospital of Pittsburgh, and the University of Pittsburgh School of Medicine. "More of the islet cells survived in culture. And when we transplanted islet cells into diabetic, immunodeficient mice, it took fewer of the antioxidant-treated islet cells to normalize their blood sugar."

In type 1 diabetes, a person’s immune system mistakenly attacks and destroys islet cells that secrete insulin necessary for the metabolism of sugar. Many diabetes patients take insulin shots to make up for the lost islet cells. In 2000, researchers from Edmonton, Alberta, reported new techniques that have made islet-cell transplantation a promising option for patients with type 1 diabetes. It allows patients to produce their own insulin. Patients have to take immunosuppressive drugs to prevent rejection of the transplants, but they maintain better control of their insulin levels, thus reducing the chances of future complications. They also avoid the daily insulin injections. Clinical trials of the "Edmonton protocol" are being conducted at several medical centers around the nation.

One drawback to the Edmonton protocol is that pancreata from at least two donors are needed to supply enough islet cells for one successful transplant. Many cells die during isolation and shortly after transplantation. Since islet cells also rapidly die in culture, surgeons are forced to transplant the cells immediately after they have been isolated. This prevents physicians from taking several steps that could improve the likelihood of a successful transplant. Isolation of the islet cells from the pancreas stresses them, leading to inflammation and islet-cell death. Highly reactive free-radical molecules contribute to this stress. Dr. Piganelli and his colleagues reasoned that an antioxidant compound might help islet cells survive and improve transplant success by neutralizing the free radicals.

The researchers used two synthetic antioxidants developed several years earlier by Dr. James Crapo, M.D., Chairman of the Department of Medicine at National Jewish, and his colleagues. The antioxidants, dubbed AEOL10113 and AEOL10150, mimic the naturally occurring antioxidant superoxide dismutase, but are effective against a wider range of oxygen radicals and last longer in the body. Now licensed by Incara Pharmaceuticals Corporation, they have shown promise in preventing damage to cells caused by stroke and radiation therapy for cancer. Earlier this year, Dr. Piganelli and his colleagues showed that the antioxidants could prevent the development of type 1 diabetes in mice when given T cells that normally causes the disease. (Press release)

"We are excited that these synthetic antioxidants are protecting cells in such a wide range of hazardous conditions," said Dr. Crapo.

Islet-cell loss was cut in half over a six-day period, from 60% to 30%, when the antioxidants were applied during isolation of the islet cells. The antioxidants also improved the effectiveness of the islet-cell transplants. When large amounts of islet cells (700-1,000 islet equivalents) were transplanted into six diabetic mice, all the animals became healthy. But when smaller amounts of islet cells (200-220 islet equivalents) were transplanted into nine diabetic mice, half the mice who got untreated islet cells remained diabetic while all the animals with antioxidant-treated islet cells returned to full health.

"The antioxidant-treated cells are healthier when they are transplanted into the mice and survive better after the transplant," said Dr. Piganelli. "We think it may be worthwhile to use the antioxidant during preservation of the pancreas, before the isolation begins, and after transplantation."

William Allstetter | EurekAlert
Further information:
http://www.dean-med.pitt.edu/home.asp
http://www.nationaljewish.org/faculty/crapo.html
http://www.incara.com/

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>