Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effects of physical training on the heart

28.07.2008
Just like any other muscle, the structure of the heart can be changed through exercise.

However, this adaptation process takes longer than it takes the muscle to revert to its original conditions. Researchers from the Universidad Politécnica de Madrid (UPM) have studied this process in well trained hearts during their investigations to identify pathologies.

Certainly everyone has at some point realized that the efforts at the gym result in increased muscle tone, even if this is not easy to maintain. The same applies to the heart; after enduring intense physical exercise some of its characteristics change. Thanks to modern imaging technology, in particular echocardiography, the study of such characteristics has greatly improved.

In sports medicine, it is very important to know how the heart adapts and regresses to its original state in athletes who train intensively. The information of the regression of the heart to a normal status when the training stimulus is removed is used by sports cardiologists to delimit the physiologic adaptation of the pathology.

In general, all the studies carried out with echocardiography for sports people with high levels of heart adaptation (rowers, cyclists, long distance runners…) have proven that the effects of heart training are increases in the size of the cavities (mainly the left ventricle) and thickness of the myocardium. Nonetheless, the regression of echocardiographic measurements caused by the decrease in training intensity has so far shown contradictory results.

Correctly interpreting the echocardiographic images and understanding the regression of the heart to its initial status is crucial, as there are heart diseases that resemble the natural adaptation caused by training. For this reason, since the initial study with sports athletes, there have been numerous others with the direct or indirect objective of determining the differences between a healthy heart and an unhealthy one.

Researchers from the Laboratorio de Fisiología del Esfuerzo of the Facultad de Ciencias de la Actividad Física y del Deporte of the Universidad Politécnica de Madrid, in collaboration with British and Italian scientists, have studied the reasons for the inconclusive results, that up to now have resulted from the study of the adaptation and regression caused by training. The main conclusion is that regression is a relevant process when attempting to distinguish the physiological phenomenon that the training represents from the effects of heart diseases.

In the case of a healthy trained heart, it reverts to it's original measurements once the stimulus disappears, as opposed to the case of an ill heart (“Hypertrophy” or “Dilatation of the heart”) that might exhibit similar alterations, but maintains or aggravates these produced changes. When an exaggerated hypertrophy is detected in an examination by sports cardiology services, the treatment to be followed is precisely to change the training regime.

In order to understand the technical limitations of echocardiography in determining the small variations that could be produced when the cavities size and the myocardium thickness are measured, it is convenient to look at some pictures.

Figure one shows an echocardiographic image, to the left in one dimension and to the right in two dimensions. The "area” to be measured is registered in two dimensions, but the measurements are taken in one dimension only. In figure two, a freehand representation of the image shown in figure one is represented. The average variation of thickness demonstrated by the different studies that were analysed range from 1 to 5 mm, which gives an idea of the rigour necessary to evaluate echocardiographies.

Ciencia y Sociedad | alfa
Further information:
http://www.upm.es
http://www.revespcardiol.org
http://www.escardio.org/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>