Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effects of physical training on the heart

28.07.2008
Just like any other muscle, the structure of the heart can be changed through exercise.

However, this adaptation process takes longer than it takes the muscle to revert to its original conditions. Researchers from the Universidad Politécnica de Madrid (UPM) have studied this process in well trained hearts during their investigations to identify pathologies.

Certainly everyone has at some point realized that the efforts at the gym result in increased muscle tone, even if this is not easy to maintain. The same applies to the heart; after enduring intense physical exercise some of its characteristics change. Thanks to modern imaging technology, in particular echocardiography, the study of such characteristics has greatly improved.

In sports medicine, it is very important to know how the heart adapts and regresses to its original state in athletes who train intensively. The information of the regression of the heart to a normal status when the training stimulus is removed is used by sports cardiologists to delimit the physiologic adaptation of the pathology.

In general, all the studies carried out with echocardiography for sports people with high levels of heart adaptation (rowers, cyclists, long distance runners…) have proven that the effects of heart training are increases in the size of the cavities (mainly the left ventricle) and thickness of the myocardium. Nonetheless, the regression of echocardiographic measurements caused by the decrease in training intensity has so far shown contradictory results.

Correctly interpreting the echocardiographic images and understanding the regression of the heart to its initial status is crucial, as there are heart diseases that resemble the natural adaptation caused by training. For this reason, since the initial study with sports athletes, there have been numerous others with the direct or indirect objective of determining the differences between a healthy heart and an unhealthy one.

Researchers from the Laboratorio de Fisiología del Esfuerzo of the Facultad de Ciencias de la Actividad Física y del Deporte of the Universidad Politécnica de Madrid, in collaboration with British and Italian scientists, have studied the reasons for the inconclusive results, that up to now have resulted from the study of the adaptation and regression caused by training. The main conclusion is that regression is a relevant process when attempting to distinguish the physiological phenomenon that the training represents from the effects of heart diseases.

In the case of a healthy trained heart, it reverts to it's original measurements once the stimulus disappears, as opposed to the case of an ill heart (“Hypertrophy” or “Dilatation of the heart”) that might exhibit similar alterations, but maintains or aggravates these produced changes. When an exaggerated hypertrophy is detected in an examination by sports cardiology services, the treatment to be followed is precisely to change the training regime.

In order to understand the technical limitations of echocardiography in determining the small variations that could be produced when the cavities size and the myocardium thickness are measured, it is convenient to look at some pictures.

Figure one shows an echocardiographic image, to the left in one dimension and to the right in two dimensions. The "area” to be measured is registered in two dimensions, but the measurements are taken in one dimension only. In figure two, a freehand representation of the image shown in figure one is represented. The average variation of thickness demonstrated by the different studies that were analysed range from 1 to 5 mm, which gives an idea of the rigour necessary to evaluate echocardiographies.

Ciencia y Sociedad | alfa
Further information:
http://www.upm.es
http://www.revespcardiol.org
http://www.escardio.org/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>