Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lung inflammation from influenza and other infections could be turned off following new discovery

28.07.2008
A new discovery could lead to treatments which turn off the inflammation in the lungs caused by influenza and other infections, according to a study published today in the journal Nature Immunology.

The symptoms of influenza, such as breathlessness, weight loss and fever, are made much worse by the immune system responding in an exaggerated way to the virus, rather than by the virus itself. The virus is often cleared from the body by the time symptoms appear and yet symptoms can last for many days, because the immune system continues to fight the damaged lung.

The immune system is essential for clearing the virus, but it can damage the body when it overreacts if it is not quickly contained. Such overreaction occurs in a number of diseases as well as influenza, such as asthma and inflammatory conditions in the gut.

During influenza infection, the immune system's prolonged response causes the lungs to become inflamed and this can clog the airways and cause difficulty breathing.

The new study, led by researchers from Imperial College London, reveals how the activity of immune cells in the lung is normally kept under control by a receptor known as CD200R, working with another molecule called CD200.

CD200R is found in high levels in the lungs and the new research shows that it is able to limit the immune system's response and to turn off inflammation once it has started.

Influenza overrides the CD200 molecule and without CD200 to bind to, CD200R cannot work to prevent the immune system from overreacting, so the lungs become inflamed.

In the new study, the researchers gave mice infected with influenza a mimic of CD200, or an antibody to stimulate CD200R, to see if these would enable CD200R to bring the immune system under control and reduce inflammation.

The mice that received treatment had less weight loss than control mice and less inflammation in their airways and lung tissue. The influenza virus was still cleared from the lungs within seven days and so this strategy did not appear to affect the immune system's ability to fight the virus itself.

Following these results in mice, the researchers hope that a therapy could be developed for people which can quickly work with the CD200R receptor and stop the immune system from fighting when it is no longer needed. They believe this would quickly reduce symptoms and reduce the damage that the immune system causes in the lungs and elsewhere.

Professor Tracy Hussell, the lead author of the research from the National Heart and Lung Institute at Imperial College London, said: "The immune system is very sophisticated and much of the time it does a fantastic job of fighting infection, but it has the ability to cause a lot of damage when it overreacts. Our new research is still in its early stages, but these findings suggest that it could be possible to prevent the immune system going into overdrive, and limit the unnecessary damage this can cause."

Dr Robert Snelgrove, a Sir Henry Wellcome Postdoctoral Fellow at Imperial College London and another author of the research, added: "Although flu is just an inconvenience for some people, it can be dangerous and even fatal in the very young and elderly. We hope our research could ultimately help to develop treatments which fight the effects of this sometimes lethal virus."

The researchers hope that in the event of a flu pandemic, such as a pandemic of H5N1 avian flu that had mutated to be transmissible between humans, the new treatment would add to the current arsenal of anti-viral medications and vaccines. One key advantage of this type of therapy is that it would be effective even if the flu virus mutated, because it targets the body's overreaction to the virus rather than the virus itself.

In addition to the possible applications for treating influenza, the researchers also hope their findings could lead to new treatments for other conditions where excessive immunity can be a problem, including other infectious diseases, autoimmune diseases and allergy.

The research was funded by the Medical Research Council, the US National Institutes of Health, the Wellcome Trust, and the European Union.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>