Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds link between small birth size and changes to the cardiovascular system that predispose to disease in later life

23.07.2008
The research by Dr Alexander Jones and colleagues, published online in Europe’s leading cardiology journal, the European Heart Journal [1] today (Wednesday 23 July), adds to the evidence that adverse environments experienced by the baby before birth and indicated by low birth weight, can cause long-term changes in the heart and blood vessels, leading to heart and blood vessel disease in later life.

So far, the mechanisms involved have been poorly understood, and there has been little research into the alterations that might occur during childhood.

Dr Jones, who was a clinical research fellow at the Medical Research Council’s Epidemiology Resource Centre at the University of Southampton and Southampton General Hospital, UK, at the time of the research (he is now a Clinician Scientist at the UCL Institute of Child Health, London), studied 140 children aged between eight and nine, while they underwent a psychosocial stress test.

Growing evidence suggests that measures of the way the heart and blood vessels function during stress reveal individual characteristics associated with a greater risk of hypertension (high blood pressure) and disease of the heart and blood vessels.

The children had been healthy babies, born in a maternity hospital in Southampton, and were within the normal birth weight range (with an average of 3.56 kg for boys and 3.41 kg for girls). They were asked to perform a public-speaking task involving storytelling followed by mental arithmetic while the performance of their heart and circulation was recorded using electrical sensors.

Dr Jones said: “In boys, we found that the lower their birth weight was, within the normal range, the more likely they were to have a higher vascular resistance – the resistance to flow that has to be overcome to push blood around the circulatory system – and higher blood pressure, particularly 25-30 minutes after the start of the stress test. This probably represents a prolongation of the vascular stress response in these boys.

“In contrast, girls who were smaller at birth did not demonstrate a specific response to stress. They consistently (whether under stress or at rest) showed evidence of greater activity in the sympathetic nervous system – the part of the nervous system that controls involuntary actions and becomes more active during stress, contributing to the ‘fight or flight’ response.

“This is the first evidence in children of relationships between size at birth and the later function of the heart and blood vessels. The sex differences in these relationships were striking and may eventually lead to a better understanding of why men and women tend to develop high blood pressure and heart or vascular disease at different times in their lives. It suggests that different underlying mechanisms for developing the same disorder may exist in the two sexes but have the same eventual result.”

While the changes in the children’s responses to stress did not show that they had any early indications of disease, Dr Jones said: “We have strong reasons to believe that children with more exaggerated stress responses are more likely to become adults who develop hypertension and go on to develop heart or vascular disease earlier in life than those who do not demonstrate these greater responses.”

A strength of the study was that it was carried out in young children before puberty when it was unlikely that any disease processes would have started that might alter the results – unlike the situation in adults. “Thus, we can be more confident that the differences we are finding represent the very early indicators of processes that underlie later disease,” said Dr Jones.

“By highlighting these specific heart and circulatory changes in the developing child, we may, in the future, be able to develop interventions that target the origins of heart and circulatory diseases. These diseases are the world's biggest killers but their causes are still poorly understood and the vast majority of medical attention is given to their palliation once they have already occurred. I believe my studies and future studies will focus more on childhood in an effort to better understand the processes that lead to disease and to seek to reverse them before it is too late to do anything about it.”

Jacqueline Partarrieu | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>