Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved culture system for hepatitis C virus infection

16.07.2008
A University of California, San Diego School of Medicine researcher has developed the first tissue culture of normal, human liver cells that can model infection with the Hepatitis C virus (HCV) and provide a realistic environment to evaluate possible treatments.

The novel cell line, described in the July 16 issue of PLoS ONE, will allow pharmaceutical companies to effectively test new drug candidates or possible vaccines for the HCV infection, which afflicts about 170 million people worldwide. Currently, there is no animal model that is effective for testing such therapies.

Assistant Professor of Medicine Martina Buck, Ph.D., researcher at UC San Diego's Department of Medicine and Moores UCSD Cancer Center developed the novel culture system, which mimics the biology of HCV infection in humans.

"This is the first efficient and consistent model system for HCV to be developed," said Buck, adding that it will now enable researchers not only to conduct mechanistic experiments in culture, such as blocking the virus pathways, but also to more effectively screen possible therapies for HCV. "There is a need for new treatments, and for development of a possible vaccine for HCV. Now we have a model system to support work by investigators in this area."

Currently, there is only a single treatment for HCV, PEG- interferon-á. The drug combination has an average response rate of about 50 percent in HCV cases, but it is much lower than that, closer to 20 percent, in individuals with liver cirrhosis. It can also cause severe flu-like side effects. Approximately 10,000 deaths due to cirrhosis of the liver and several thousand more from liver cancer are attributed to HCV infection in the United States each year.

The HCV life cycle is only partially understood because, until now, it has not been possible to efficiently infect normal human hepatocytes, or liver cells, in culture. According to Buck, the valuable Huh-7 system currently in use to test HCV uses cloned, synthetic HCV RNA expressed from liver tumor cells. These cells cannot be infected with naturally occurring HCV obtained from infected patients.

In contrast, the culture developed by the UCSD scientists allows direct infection with HCV genotypes 1, 2, 3 and 4 from the blood of HCV-infected patients. This system will enable researchers to study the complete viral lifecycle in its normal host cell, providing novel scientific opportunities. The study reports that the system has been tested using over 30 virus donors as well as multiple donors of hepatocytes, with the production of infectious HCV for all genotypes tested.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>