Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological marker for Alzheimer’s holds promise for earlier diagnosis and treatment

15.07.2008
Researchers at Robarts Research Institute at The University of Western Ontario have found clear evidence that increases in the size of the brain ventricles are directly associated with cognitive impairment and Alzheimer’s disease.
Ventricles are fluid-filled cavities in the brain. The research, led by Robarts scientist Robert Bartha, shows the volume of the brain ventricles expands as surrounding tissue dies. The research was published online today in the neurology journal Brain.

Currently, diagnosis for Alzheimer’s relies on neuro-cognitive assessments, such as testing of memory, ability to problem solve, count, etc. Definitive diagnosis is not possible until after death when an autopsy can reveal the presence of amyloid plaques and ‘tangles’ in brain tissue.

Previous research has shown the link between ventricle size and Alzheimer’s over longer time intervals. The research conducted at Robarts Research Institute shows that ventricle size increases with mild cognitive impairment before a diagnosis of Alzheimer’s disease, and continues to increase with the onset and progression of Alzheimer’s disease after only six months.

“These findings mean that, in the future, by using magnetic resonance imaging (MRI) to measure changes in brain ventricle size, we may be able to provide earlier and more definitive diagnosis,” said Bartha, who is also an Associate Professor in the Schulich School of Medicine & Dentistry in Medical Biophysics. “In addition, as new treatments for Alzheimer’s are developed, the measurement of brain ventricle changes can also be used to quickly determine the effectiveness of the treatment.”

The research also showed that Alzheimer’s patients with a genetic marker for Alzheimer’s disease exhibited faster expansion in ventricle volume.

The research was performed by utilizing MRI scans from individuals from across North America. Graduate student Sean Nestor, a coauthor, examined 500 data sets of individuals at baseline and six months later. The images were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a large multi-site trial sponsored by the National Institutes of Health in the United States and the pharmaceutical industry. The project includes an online database of imaging information gathered from 800 people at more than 50 sites across the U.S. and Canada. The images are MRIs of individuals with no cognitive impairment, those with mild cognitive impairment and people with Alzheimer’s disease. The database can be used by any primary researcher.

One of the ADNI sites is at London’s Lawson Health Research Institute, and is led by Dr. Michael Borrie, a co-investigator on the research. Dr. Borrie is Medical Director of the Aging Brain and Memory Clinic and Geriatric Clinical Trials Group at Parkwood Hospital, St. Joseph’s Health Care, London, a Lawson researcher and Chair of the Division of Geriatric Medicine at Western’s Schulich School of Medicine & Dentistry.

Examination of the MRIs was made possible by using software developed by Cedara Software, the OEM division of Merge Healthcare. In the past, researchers would have to manually or semi-automatically trace the ventricles in many brain images, each showing a “slice” of the brain. The Merge OEM software team, led by Vittorio Accomazzi, a coauthor in the research, worked closely with the researchers to refine the software to allow the processing of large volumes of data very quickly.

"This is one of the first major research studies published using data from ADNI", said Borrie, "but there will be many more neuroimaging and biomarker discoveries to arise from the ADNI project. It is a tremendous opportunity for researchers anywhere in the world to use the ADNI databases, to collaborate and share their findings in a new way that will move Alzheimer's disease research forward more quickly, objectively and effectively. Already we are building new international collaborations, arising from ADNI, that we could not have even imagined."

For more information contact: Kathy Wallis, Media Relations Officer - 519-661-2111 ext 81136, Kathy.wallis@schulich.uwo.ca

Kathy Wallis | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>