Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological marker for Alzheimer’s holds promise for earlier diagnosis and treatment

15.07.2008
Researchers at Robarts Research Institute at The University of Western Ontario have found clear evidence that increases in the size of the brain ventricles are directly associated with cognitive impairment and Alzheimer’s disease.
Ventricles are fluid-filled cavities in the brain. The research, led by Robarts scientist Robert Bartha, shows the volume of the brain ventricles expands as surrounding tissue dies. The research was published online today in the neurology journal Brain.

Currently, diagnosis for Alzheimer’s relies on neuro-cognitive assessments, such as testing of memory, ability to problem solve, count, etc. Definitive diagnosis is not possible until after death when an autopsy can reveal the presence of amyloid plaques and ‘tangles’ in brain tissue.

Previous research has shown the link between ventricle size and Alzheimer’s over longer time intervals. The research conducted at Robarts Research Institute shows that ventricle size increases with mild cognitive impairment before a diagnosis of Alzheimer’s disease, and continues to increase with the onset and progression of Alzheimer’s disease after only six months.

“These findings mean that, in the future, by using magnetic resonance imaging (MRI) to measure changes in brain ventricle size, we may be able to provide earlier and more definitive diagnosis,” said Bartha, who is also an Associate Professor in the Schulich School of Medicine & Dentistry in Medical Biophysics. “In addition, as new treatments for Alzheimer’s are developed, the measurement of brain ventricle changes can also be used to quickly determine the effectiveness of the treatment.”

The research also showed that Alzheimer’s patients with a genetic marker for Alzheimer’s disease exhibited faster expansion in ventricle volume.

The research was performed by utilizing MRI scans from individuals from across North America. Graduate student Sean Nestor, a coauthor, examined 500 data sets of individuals at baseline and six months later. The images were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a large multi-site trial sponsored by the National Institutes of Health in the United States and the pharmaceutical industry. The project includes an online database of imaging information gathered from 800 people at more than 50 sites across the U.S. and Canada. The images are MRIs of individuals with no cognitive impairment, those with mild cognitive impairment and people with Alzheimer’s disease. The database can be used by any primary researcher.

One of the ADNI sites is at London’s Lawson Health Research Institute, and is led by Dr. Michael Borrie, a co-investigator on the research. Dr. Borrie is Medical Director of the Aging Brain and Memory Clinic and Geriatric Clinical Trials Group at Parkwood Hospital, St. Joseph’s Health Care, London, a Lawson researcher and Chair of the Division of Geriatric Medicine at Western’s Schulich School of Medicine & Dentistry.

Examination of the MRIs was made possible by using software developed by Cedara Software, the OEM division of Merge Healthcare. In the past, researchers would have to manually or semi-automatically trace the ventricles in many brain images, each showing a “slice” of the brain. The Merge OEM software team, led by Vittorio Accomazzi, a coauthor in the research, worked closely with the researchers to refine the software to allow the processing of large volumes of data very quickly.

"This is one of the first major research studies published using data from ADNI", said Borrie, "but there will be many more neuroimaging and biomarker discoveries to arise from the ADNI project. It is a tremendous opportunity for researchers anywhere in the world to use the ADNI databases, to collaborate and share their findings in a new way that will move Alzheimer's disease research forward more quickly, objectively and effectively. Already we are building new international collaborations, arising from ADNI, that we could not have even imagined."

For more information contact: Kathy Wallis, Media Relations Officer - 519-661-2111 ext 81136, Kathy.wallis@schulich.uwo.ca

Kathy Wallis | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>