Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biological marker for Alzheimer’s holds promise for earlier diagnosis and treatment

Researchers at Robarts Research Institute at The University of Western Ontario have found clear evidence that increases in the size of the brain ventricles are directly associated with cognitive impairment and Alzheimer’s disease.
Ventricles are fluid-filled cavities in the brain. The research, led by Robarts scientist Robert Bartha, shows the volume of the brain ventricles expands as surrounding tissue dies. The research was published online today in the neurology journal Brain.

Currently, diagnosis for Alzheimer’s relies on neuro-cognitive assessments, such as testing of memory, ability to problem solve, count, etc. Definitive diagnosis is not possible until after death when an autopsy can reveal the presence of amyloid plaques and ‘tangles’ in brain tissue.

Previous research has shown the link between ventricle size and Alzheimer’s over longer time intervals. The research conducted at Robarts Research Institute shows that ventricle size increases with mild cognitive impairment before a diagnosis of Alzheimer’s disease, and continues to increase with the onset and progression of Alzheimer’s disease after only six months.

“These findings mean that, in the future, by using magnetic resonance imaging (MRI) to measure changes in brain ventricle size, we may be able to provide earlier and more definitive diagnosis,” said Bartha, who is also an Associate Professor in the Schulich School of Medicine & Dentistry in Medical Biophysics. “In addition, as new treatments for Alzheimer’s are developed, the measurement of brain ventricle changes can also be used to quickly determine the effectiveness of the treatment.”

The research also showed that Alzheimer’s patients with a genetic marker for Alzheimer’s disease exhibited faster expansion in ventricle volume.

The research was performed by utilizing MRI scans from individuals from across North America. Graduate student Sean Nestor, a coauthor, examined 500 data sets of individuals at baseline and six months later. The images were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a large multi-site trial sponsored by the National Institutes of Health in the United States and the pharmaceutical industry. The project includes an online database of imaging information gathered from 800 people at more than 50 sites across the U.S. and Canada. The images are MRIs of individuals with no cognitive impairment, those with mild cognitive impairment and people with Alzheimer’s disease. The database can be used by any primary researcher.

One of the ADNI sites is at London’s Lawson Health Research Institute, and is led by Dr. Michael Borrie, a co-investigator on the research. Dr. Borrie is Medical Director of the Aging Brain and Memory Clinic and Geriatric Clinical Trials Group at Parkwood Hospital, St. Joseph’s Health Care, London, a Lawson researcher and Chair of the Division of Geriatric Medicine at Western’s Schulich School of Medicine & Dentistry.

Examination of the MRIs was made possible by using software developed by Cedara Software, the OEM division of Merge Healthcare. In the past, researchers would have to manually or semi-automatically trace the ventricles in many brain images, each showing a “slice” of the brain. The Merge OEM software team, led by Vittorio Accomazzi, a coauthor in the research, worked closely with the researchers to refine the software to allow the processing of large volumes of data very quickly.

"This is one of the first major research studies published using data from ADNI", said Borrie, "but there will be many more neuroimaging and biomarker discoveries to arise from the ADNI project. It is a tremendous opportunity for researchers anywhere in the world to use the ADNI databases, to collaborate and share their findings in a new way that will move Alzheimer's disease research forward more quickly, objectively and effectively. Already we are building new international collaborations, arising from ADNI, that we could not have even imagined."

For more information contact: Kathy Wallis, Media Relations Officer - 519-661-2111 ext 81136,

Kathy Wallis | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>