Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corneal Transplant Technique Shows Promise in Children

15.07.2008
For infants and children with blinding diseases of the cornea, a sophisticated new corneal transplantation technique offers the hope of improving vision while overcoming the technical difficulty and low success rate of traditional penetrating keratoplasty (PK) in children, according to reports in the current issue of the Journal of AAPOS (American Association for Pediatric Ophthalmology and Strabismus).

The issue includes two case reports on the successful use of "Descemet stripping automated endothelial keratoplasty" (DSAEK) in children with corneal disease. If the promising results are borne out by further research, DSAEK could provide an alternative to traditional corneal transplantation—a notoriously difficult procedure in children, failing more often than it succeeds.

Dr. Bennie H. Jeng and colleagues of The Cleveland Clinic Cole Eye Institute performed DSAEK in a 21-month-old boy, while Dr. Mark M. Fernandez and colleagues of Duke University Eye Center report the results of DSAEK in a 9-year-old boy. Both children had irreversible damage to the corneal endothelium—a specialized, single-cell layer at the rear (posterior) of the cornea—after complications of cataract surgery.

In DSAEK, the diseased endothelium is removed and replaced by a "button" of healthy endothelium from a cornea donor. After careful handling and meticulous placement, the button is held in place for the first 24 hours by nothing more than a bubble of air—during this time, the patient must lie flat to keep the air bubble and transplant in place.

In adults, DSAEK is currently "in vogue" as an alternative to traditional penetrating keratoplasty, according to a commentary by Dr. Kathryn Colby of Massachusetts Eye and Ear Infirmary, Harvard Medical School. DSAEK offers several advantages over PK. One key advantage is much more rapid recovery of vision—within 6 to 12 weeks after DSAEK, compared to 6 to 12 months with traditional PK surgery.

Shorter recovery time is especially important in young children with developing vision, who are at risk of further, potentially severe vision loss (amblyopia). Both children in the case reports had good results, showing improved vision within a few months after DSAEK.

Because is less invasive, DSAEK also has a lower risk of certain complications compared to PK. Postoperative management is simplified because no sutures are placed in the cornea.

Many questions remain regarding the use of DSAEK in children. Since most children who need corneal transplants have other abnormalities as well, DSAEK would be an option in only about 20 percent of cases. The need to have the patient lie flat for 24 hours after surgery poses challenges in young children, and concerns about potential complications and long-term results have to be addressed. Other treatment options are emerging as well, including the use of an artificial cornea or "keratoprosthesis."

Meanwhile, DSAEK offers an exciting new treatment possibility at least for some children with corneal disease. "We now have an expanded repertoire of better surgical options for children needing PK," Dr. Colby concludes. "The future is bright for those who undertake these challenging, but potentially life-changing, surgeries."

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>