Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart death risk cut by early warning drugs tests

14.07.2008
The likelihood of people dying because their medication has a side effect that affects the electrical activity of the heart is being reduced – thanks to a better understanding of why this happens and the development of tests to predict it.

The progress made on this topic will be discussed by leading scientists at The Federation of European Pharmacological Societies (EPHAR) 2008 Congress in Manchester on Monday, 14 July, 2008.

Many kinds of medicine are associated with this adverse drug reaction, which initially involves a slowing of the electrical recovery of the heart each time it beats – known as QT prolongation.

Although this effect is not in itself dangerous, in a small percentage of people, particularly those with existing heart problems, it may lead to a potentially fatal abnormal heart rhythm known as Torsades de Pointes (TdP).

The symposium at the University of Manchester will review how tests done before potential new medicines are given to patients can be used to assess the probability that a drug will lead to QT prolongation or to the actual risk (TdP).

Leading European researchers will meet at the conference, which is hosted by the British Pharmacological Society, to discuss what early testing is done, how the results are used, how good they are at predicting effects on electrical activity in the human heart and what areas there may be for improvement.

Symposium organizer Dr Jean-Pierre Valentin of AstraZeneca R&D, Alderley Park, Cheshire, says that although significant progress has been made, which has decreased the number of old and new drugs carrying this cardiac safety risk, there is still more work to be done before strategies for assessing the risk are optimal.

He said: "The work being discussed is just one element of a discipline known as safety pharmacology. This involves determining which drug side effects could potentially be life-threatening and then trying to put in place tests that predict whether a given chemical might have one of these serious side effects in humans.

“By law, these tests must be done before a potential drug is first given to humans. In this way, the ultimate aim is to discover new medicines that can be developed rapidly and safely without causing any side-effects.

Dr Valentin continued: "Because the biology of the human body is so complex, no single group has the resources or breadth of knowledge to devise the best possible approach to predicting and preventing a given side effect. Rapid progress therefore needs academic and pharmaceutical company pharmacologists, doctors, government agencies and patients to collaborate as much as possible in order to share their knowledge and data. The symposium is just one mechanism for trying to achieve this.

Speaking specifically about TdP he said: "Until recently, the first indication that a drug carried a TdP risk was in patients, and, since it is a rare side-effect, this was only after millions patients had taken the drug.

“Although the low incidence of TdP might suggest relatively little need for concern, some of the medicines causing TdP were only for minor treatments such as hay fever, in which case the safety risk of the drug far outweighed the benefit to the patient.

"Medicines for non life-threatening diseases that are known to cause TdP in man are no longer available, but for serious conditions, such as cancer, the risk of TdP is far lower than the risk of dying from cancer so the use of such drugs in still justified but requires very careful, additional monitoring by doctors.

“Therefore, the challenge is to be able to produce medicines for all health issues, irrespective of their severity, that carry no TdP risk. This is particularly important because of the large number of people with cardiovascular diseases that would increase their TdP risk - such as those with high blood pressure, high cholesterol and diabetes.

"The most important advance in understanding this side-effect was the realisation, based on the work of many scientists, that the fundamental cause is most likely to be the drug sticking to a particular protein in the heart.

“This information is crucial, since once this protein - known as hERG - was identified, tests could be developed that could be done in a test tube and were so simple that hundreds of different chemical structures could be tested in a working day. This massively increases the chances that the chemists making the potential drugs can find one that doesn't stick to hERG and therefore is unlikely to cause TdP.

"An important additional benefit from testing many compounds is that data for the activity of each compound can be fed into computer models that are ‘trained’ to predict the likely activity of compounds designed in a computer. This so-called ‘virtual screening’ allows thousands of compounds to be ‘tested’ per day.

"While these tests significantly reduce the risk that a new medicine will cause TdP, there are other factors. At this symposium we want in particular to assess how good our current tests are at predicting the outcome in man, and how best we can predict other drug effects leading to TdP. The learning points from the hERG and TdP story are important not just for this particular side-effect but for safety pharmacology in general."

The theme of drug safety will be continued at EPHAR 2008 on Monday, with Prof Pierluigi Nicotera, Director of the MRC Toxicology Unit, University of Leicester, delivering a plenary lecture titled ‘Understanding Molecular Mechanisms of Cell Injury and Death: a Way to Improve Drug Safety and Design’.

Prof Nicotera said: “My research is focused on the mechanisms that decide death or survival of brain cells. The Unit is working to clarify which are the most relevant targets in disease processes regardless of the origin of disease – both common human diseases and diseases caused by toxic chemicals.

“By doing so we aim to understand common patterns of tissue responses to injury that can be targeted by new drugs. This could also lead to understand adverse drug reactions and cytotoxic processes occurring in organs following chemical exposure.”

Alex Waddington | alfa
Further information:
http://www.stem-media.co.uk

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>