Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Umbilical Cord Stem Cells Transport Anti-Cancer Drugs Directly to Tumors

Kansas State University researchers are working on a method of delivering cancer drugs that promises to be more efficient and reduce the side effects patients have to deal with.

"Although chemotherapy has saved many lives, it often has undesirable side effects," said Deryl Troyer, professor of anatomy and physiology at K-State's College of Veterinary Medicine. "The people most excited about this research are people who have gone through chemo, because our approach may circumvent many of those side effects."

Troyer and two K-State faculty -- Duy Hua, university distinguished professor of chemistry, and Masaaki Tamura, associate professor of anatomy and physiology -- received a $380,000 grant from the National Institutes of Health. They are studying how stem cells can be used to deliver anti-cancer drugs directly to breast cancer cells via nanoparticles. The researchers have studied the method in vitro but soon hope to study the method in preclinical models. The research is a part of the program of the Midwest Institute for Comparative Stem Cell Biology at K-State and has received support from K-State's Terry C. Johnson Center for Basic Cancer Research.

The researchers are using stem cells isolated from Wharton's jelly, the substance that cushions blood vessels in the umbilical cord. These types of stem cells can be harvested noninvasively and therefore are not controversial.

"Billions and billions of these cells are disposed of every day," Troyer said. "We think these cells have a lot of advantages, including their ability to be harvested in large numbers very rapidly."

Troyer said the stem cells display a sort of homing ability in that they tend to travel to tumors and other pathological lesions. The researchers are using these stem cells as delivery systems by loading the cells with nanoparticles that contain anti-cancer drugs.

"We are using the cells as stealth vehicles," Troyer said.

Hua is fabricating the nanoparticles and some of the small-molecule drugs for the research. The tiny capsules carrying the drugs are nanogels made up of two polymers. The nanogel has a dye molecule that allows the researchers to follow it through the body using a fluorescent microscope.

The nanogel capsules are loaded into a stem cell, which responds to proteins sent out by the cancer cells by homing to them, Hua said. As the stem cells reach the cancer tissues, another chemical that induces cell death of the stem cells will be administered -- only stem cells are engineered to respond to this additional drug. This means that the nanogel-encapsulated drugs will be released from the stem cells directly at the cancer tissue.

"The nanogel can be viewed as a very tiny piece of paper that wraps around the anti-cancer drug like a candy wrapper," Hua said. "Over time or under certain conditions, the paper unwraps and releases the candy. Most anti-cancer drugs, including ours, are insoluble in water. However, the nanogel is water soluble."

Because the drugs are going directly to cancer cells, Troyer said this method potentially can cause fewer side effects than less direct methods like intravenous chemotherapy. Troyer said that this research will make existing but underused cancer drugs more useful to the doctors who treat people with cancer.

"Many potent small-molecule drugs are sitting on a shelf collecting dust," Troyer said. "Often they are insoluble or have many toxic effects. We hope to deliver some of these compounds in a more targeted manner via the combination of stem cells and nanoparticles. Although nanotechnology has made enormous strides toward more focused drug delivery, there is always room for improvement."

Duy Hua | Newswise Science News
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>