Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umbilical Cord Stem Cells Transport Anti-Cancer Drugs Directly to Tumors

14.07.2008
Kansas State University researchers are working on a method of delivering cancer drugs that promises to be more efficient and reduce the side effects patients have to deal with.

"Although chemotherapy has saved many lives, it often has undesirable side effects," said Deryl Troyer, professor of anatomy and physiology at K-State's College of Veterinary Medicine. "The people most excited about this research are people who have gone through chemo, because our approach may circumvent many of those side effects."

Troyer and two K-State faculty -- Duy Hua, university distinguished professor of chemistry, and Masaaki Tamura, associate professor of anatomy and physiology -- received a $380,000 grant from the National Institutes of Health. They are studying how stem cells can be used to deliver anti-cancer drugs directly to breast cancer cells via nanoparticles. The researchers have studied the method in vitro but soon hope to study the method in preclinical models. The research is a part of the program of the Midwest Institute for Comparative Stem Cell Biology at K-State and has received support from K-State's Terry C. Johnson Center for Basic Cancer Research.

The researchers are using stem cells isolated from Wharton's jelly, the substance that cushions blood vessels in the umbilical cord. These types of stem cells can be harvested noninvasively and therefore are not controversial.

"Billions and billions of these cells are disposed of every day," Troyer said. "We think these cells have a lot of advantages, including their ability to be harvested in large numbers very rapidly."

Troyer said the stem cells display a sort of homing ability in that they tend to travel to tumors and other pathological lesions. The researchers are using these stem cells as delivery systems by loading the cells with nanoparticles that contain anti-cancer drugs.

"We are using the cells as stealth vehicles," Troyer said.

Hua is fabricating the nanoparticles and some of the small-molecule drugs for the research. The tiny capsules carrying the drugs are nanogels made up of two polymers. The nanogel has a dye molecule that allows the researchers to follow it through the body using a fluorescent microscope.

The nanogel capsules are loaded into a stem cell, which responds to proteins sent out by the cancer cells by homing to them, Hua said. As the stem cells reach the cancer tissues, another chemical that induces cell death of the stem cells will be administered -- only stem cells are engineered to respond to this additional drug. This means that the nanogel-encapsulated drugs will be released from the stem cells directly at the cancer tissue.

"The nanogel can be viewed as a very tiny piece of paper that wraps around the anti-cancer drug like a candy wrapper," Hua said. "Over time or under certain conditions, the paper unwraps and releases the candy. Most anti-cancer drugs, including ours, are insoluble in water. However, the nanogel is water soluble."

Because the drugs are going directly to cancer cells, Troyer said this method potentially can cause fewer side effects than less direct methods like intravenous chemotherapy. Troyer said that this research will make existing but underused cancer drugs more useful to the doctors who treat people with cancer.

"Many potent small-molecule drugs are sitting on a shelf collecting dust," Troyer said. "Often they are insoluble or have many toxic effects. We hope to deliver some of these compounds in a more targeted manner via the combination of stem cells and nanoparticles. Although nanotechnology has made enormous strides toward more focused drug delivery, there is always room for improvement."

Duy Hua | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>