Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers of the Université Libre de Bruxelles (ULB) elucidate the early mechanism of cardiovascular specification

03.07.2008
Important clinical and pharmaceutical implications.

The mature heart is composed by different cell types, including contractile cardiac cells, vascular cells, smooth muscle cells as well as pacemaker cells. During embryonic development as well as during embryonic stem cell differentiation, the different cardiovascular cell types arise from the differentiation of multipotent cardiovascular progenitors. The mechanism that promotes multipotent cardiovascular progenitor specification from undifferentiated mesoderm cell remains largely unknown.

Now, researchers from the Université Libre de Bruxelles lead by Cédric Blanpain (IRIBHM, Faculty of Medicine), shed new light into the early mechanism that governs cardiovascular specification. This research is published in July 3 issue of Cell Stem Cell.

Researchers uncover the key molecular switch that specifies undifferentiated mesodermal cells to become cardiovascular progenitors. The authors of this study found that a protein called Mesp1 acts a master regulator of multipotent cardiovascular progenitor specification. They showed that a very transient expression of a Mesp1, increase by more than 500% the differentiation of pluripotent stem cells into cardiac and vascular cells, which represent the greatest promotion of cardiovascular differentiation induced by a single factor. “When we look at the Mesp1 stimulated cells under the microscope, it was just amazing! It was looking like all cells became cardiac cells, and were spontaneously beating everywhere in the dish”, comments Antoine Bondue, the first author of the paper.

To better understand the molecular mechanism by which Mesp1 promotes cardiovascular specification, researchers from ULB used a genome-wide analysis to identify which genes are regulated by Mesp1. They found that Mesp1 directly activated many previously identified key genes responsible for cardiovascular differentiation. “Mesp1 allows the coordinate expression of all these important cardiac genes at the right place and at the right time”, comments Cédric Blanpain, the principal investigator of this study. Mesp1 also directly repressed genes promoting the acquisition of other possible cell identity during this developmental stage, ensuring the specificity in the promotion of cardiovascular cell identity induced by Mesp1. These results demonstrate that Mesp1 acts as a key regulatory switch during cardiovascular specification, residing at the top of the hierarchy of the gene network responsible for cardiovascular cell fate determination.

This new and exciting study from Cédric Blanpain Lab has also important clinical and pharmaceutical implications. Cardiovascular diseases are the primary cause of death in western countries. The method presented in this study may be used in the future to increase the source of cardiovascular cells for cellular therapy in humans, but also to generate the large amount of cardiovascular cells required for toxicology and drug screenings.

Nancy Dath | alfa
Further information:
http://www.ulb.ac.be

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>