Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers of the Université Libre de Bruxelles (ULB) elucidate the early mechanism of cardiovascular specification

03.07.2008
Important clinical and pharmaceutical implications.

The mature heart is composed by different cell types, including contractile cardiac cells, vascular cells, smooth muscle cells as well as pacemaker cells. During embryonic development as well as during embryonic stem cell differentiation, the different cardiovascular cell types arise from the differentiation of multipotent cardiovascular progenitors. The mechanism that promotes multipotent cardiovascular progenitor specification from undifferentiated mesoderm cell remains largely unknown.

Now, researchers from the Université Libre de Bruxelles lead by Cédric Blanpain (IRIBHM, Faculty of Medicine), shed new light into the early mechanism that governs cardiovascular specification. This research is published in July 3 issue of Cell Stem Cell.

Researchers uncover the key molecular switch that specifies undifferentiated mesodermal cells to become cardiovascular progenitors. The authors of this study found that a protein called Mesp1 acts a master regulator of multipotent cardiovascular progenitor specification. They showed that a very transient expression of a Mesp1, increase by more than 500% the differentiation of pluripotent stem cells into cardiac and vascular cells, which represent the greatest promotion of cardiovascular differentiation induced by a single factor. “When we look at the Mesp1 stimulated cells under the microscope, it was just amazing! It was looking like all cells became cardiac cells, and were spontaneously beating everywhere in the dish”, comments Antoine Bondue, the first author of the paper.

To better understand the molecular mechanism by which Mesp1 promotes cardiovascular specification, researchers from ULB used a genome-wide analysis to identify which genes are regulated by Mesp1. They found that Mesp1 directly activated many previously identified key genes responsible for cardiovascular differentiation. “Mesp1 allows the coordinate expression of all these important cardiac genes at the right place and at the right time”, comments Cédric Blanpain, the principal investigator of this study. Mesp1 also directly repressed genes promoting the acquisition of other possible cell identity during this developmental stage, ensuring the specificity in the promotion of cardiovascular cell identity induced by Mesp1. These results demonstrate that Mesp1 acts as a key regulatory switch during cardiovascular specification, residing at the top of the hierarchy of the gene network responsible for cardiovascular cell fate determination.

This new and exciting study from Cédric Blanpain Lab has also important clinical and pharmaceutical implications. Cardiovascular diseases are the primary cause of death in western countries. The method presented in this study may be used in the future to increase the source of cardiovascular cells for cellular therapy in humans, but also to generate the large amount of cardiovascular cells required for toxicology and drug screenings.

Nancy Dath | alfa
Further information:
http://www.ulb.ac.be

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>