Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computing breakthrough arises from unknown molecule

01.07.2008
The odd behavior of a molecule in an experimental silicon computer chip has led to a discovery that opens the door to quantum computing in semiconductors.

In a Nature Physics journal paper currently online, the researchers describe how they have created a new, hybrid molecule in which its quantum state can be intentionally manipulated - a required step in the building of quantum computers.

"Up to now large-scale quantum computing has been a dream," says Gerhard Klimeck, professor of electrical and computer engineering at Purdue University and associate director for technology for the national Network for Computational Nanotechnology.

"This development may not bring us a quantum computer 10 years faster, but our dreams about these machines are now more realistic."

The workings of traditional computers haven't changed since they were room-sized behemoths 50 years ago; they still use bits of information, 1s and 0s, to store and process information. Quantum computers would harness the strange behaviors found in quantum physics to create computers that would carry information using quantum bits, or qubits. Computers would be able to process exponentially more information.

If a traditional computer were given the task of looking up a person's phone number in a telephone book, it would look at each name in order until it found the right number. Computers can do this much faster than people, but it is still a sequential task. A quantum computer, however, could look at all of the names in the telephone book simultaneously.

Quantum computers also could take advantage of the bizarre behaviors of quantum mechanics - some of which are counterintuitive even to physicists - in ways that are hard to fathom. For example, two quantum computers could, in concept, communicate instantaneously across any distance imaginable, even across solar systems.

Albert Einstein, in a letter to Erwin Schrödinger in the 1930s, wrote that in a quantum state a keg of gunpowder would have both exploded and unexploded molecules within it (a notion that led Schrödinger to create his famous cat-in-a-box thought experiment).

This "neither here nor there" quantum state is what can be controlled in this new molecule simply by altering the voltage of the transistor.

Until now, the challenge had been to create a computer semiconductor in which the quantum state could be controlled, creating a qubit.

"If you want to build a quantum computer you have to be able to control the occupancy of the quantum states," Klimeck says. "We can control the location of the electron in this artificial atom and, therefore, control the quantum state with an externally applied electrical field."

The discovery began when Sven Rogge and his colleagues at Delft University of Technology in the Netherlands were experimenting with nano-scale transistors that show the effects of unintentional impurities, or dopants. The researchers found properties in the current-voltage characteristics of the transistor that indicated electrons were being transported by a single atom, but it was unclear what impurity was causing this effect.

Physicist Lloyd Hollenberg and colleagues at the University of Melbourne in Australia were able to construct a theoretical silicon-based quantum computer chip based on the concept of using an individual impurity.

"The team found that the measurements only made sense if the molecule was considered to be made of two parts," Hollenberg says. "One end comprised the arsenic atom embedded in the silicon, while the 'artificial' end of the molecule forms near the silicon surface of the transistor. A single electron was spread across both ends.

"What is strange about the 'surface' end of the molecule is that it occurs as an artifact when we apply electrical current across the transistor and hence can be considered 'manmade.' We have no equivalent form existing naturally in the world around us."

Klimeck, along with graduate student Rajib Rahman, developed an updated version of the nano-electronics modeling program NEMO 3-D to simulate the material at the size of 3 million atoms.

"We needed to model such a large number of atoms to see the new, extended quantum characteristics," Klimeck says.

The simulation showed that the new molecule is a hybrid, with the naturally occurring arsenic at one end in a normal spherical shape and a new, artificial atom at the other end in a flattened, 2-D shape. By controlling the voltage, the researchers found that they could make an electron go to either end of the molecule or exist in an intermediate, quantum, state.

This model was then made into an image by David Ebert, a professor of electrical and computer engineering at Purdue, and graduate student Insoo Woo.

Delft's Rogge says the discovery also highlights the current capabilities of designing electronic machines.

"Our experiment made us realize that industrial electronic devices have now reached the level where we can study and manipulate the state of a single atom," Rogge says. "This is the ultimate limit, you can not get smaller than that."

Writer: Steve Tally, (765) 494-9809, tally@purdue.edu
Sources: Gerhard Klimeck, (765) 494-9212, gekco@purdue.edu
Sven Rogge, +31 (0) 15 278 24 95, s.rogge@tudelft.nl
Lloyd Hollenberg, +61 3 8344 4210, lloydch@unimelb.edu.au
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Steve Tally | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>