Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-powered implants for injured knees

30.06.2008
As news of Tiger Woods' knee injury hits the headlines, a researcher at the University of Southampton has developed a new self-powered sensor to monitor progress during knee operations.

As part of his final year project in his Masters degree in Electromechanical Engineering, which he studied at the University's School of Electronics and Computer Science (ECS), Fauzan Baharudin explored the potential for the use of thick film technology in the development of medical sensors which could be embedded in the knee during surgery.

This new sensor, called Serial In-vivo Transducer (SIT), which uses thick film technology, could measure tendon force during Anterior Cruciate Ligament (ACL) reconstruction.

The ACL is the most commonly injured ligament and is commonly damaged by athletes, in fact it is reported that this is the ligament associated with Tiger Woods’ injury.

Fauzan’s project was supervised by Professor Neil White at ECS, who, in 1991 developed thick film piezoelectric material which made it possible to produce a sensor which could power itself if it were installed in a device that vibrates and would be ideal for appliances where physical connections to the outside world were difficult.

Professor White said: ‘Although this work is still in its infancy, our earlier research in thick-film sensors has shown that it is feasible to apply the technology to medical applications such as prosthetic hands. We have also shown that it is possible to harvest energy from the human body using piezoelectric materials and the knee is subjected to very high levels of force during everyday activities. It therefore seems logical to combine the two approaches to deliver a new type of embedded, self-powered sensors

In Fauzan’s project entitled Assessing the use of thick-film technology in knee surgery: along with energy harvesting in-vivo, he has also incorporated some of this energy harvesting capability into SIT which means that it will be self-powered.

'I chose knee surgery because this has been very little research carried out in this field and I felt a self-powered device could work well in the knee,' he said.

Before developing SIT, Fauzan reviewed the existing devices in this field and concluded that due to its flexibility in fabrication, low capital cost, fast lead time and its suitability for use in the body, thick film technology is the best solution for ACL surgery. Assessment of the energy harvesting feature revealed that the device could produce more than enough energy to power itself.

'It remains a mystery to me, given how common knee injuries are among athletes, that devices like ours have not been developed before now,' said Fauzan. 'A sensible assumption for this is that thick film technology does not reach medical researchers as quickly as it does within the microelectronics community hence the delay in realising the huge potential in developing in vivo transducers.'

Helene Murphy | alfa
Further information:
http://www.soton.ac.uk

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>