Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food Scientists Confirm the Effectiveness of Commercial Product in Killing Bacteria in Vegetable Washwater

27.06.2008
Research conducted by food science faculty at the University of Idaho and Washington State University indicate that a commercially available fruit and vegetable wash, when used in a food-manufacturing setting, can dramatically decrease the number of disease-causing organisms in produce-processing washwater. That could reduce by manyfold the potential for cross-contamination within the water by such “gram-negative” bacteria as Salmonella and E. coli O157:H7.

The product, sold commercially as FIT Fruit and Vegetable Wash, not only proved much more effective than the commonly used chlorine dioxide but is made from ingredients like citric acid and distilled grapefruit oil that are generally regarded as safe.

Chlorine dioxide, whose use in food plants can put workers at risk, was compromised by soils and plant debris in the washwater and killed only 90 percent of the target organisms in the food plant and followup laboratory studies. By contrast, FIT killed 99.9999 percent, according to associate professor of food science Dong-Hyun Kang of Washington State University. “If you had a million bacteria, you would have one left.”

The research—unusual because part of it was conducted under real-world conditions in an Idaho freshpack potato operation—will be published by the Journal of Food Science in August and is currently available at www.blackwell-synergy.com/toc/jfds/0/0. University of Idaho Extension food scientist Jeff Kronenberg said the researchers chose potatoes for their study because their dirt-laden washwater poses the greatest challenge to products designed to control microbial contamination—not because of any food-safety threat potatoes pose. Indeed, Kronenberg said, “We have historically had zero problems with food-borne diseases in potatoes that are sold in grocery stores and restaurants because they’re cooked.”

Kronenberg believes FIT should be further investigated for fresh produce that has been associated with food-borne illness—including lettuce, spinach, tomatoes, cilantro, parsley and other leafy vegetables—where it is has the potential to save lives.

According to Kang, most food-processing firms cleanse their produce in flumes that operate as aquatic conveyor belts. “If a pathogen is introduced in the washwater, it will grow and continuously contaminate the new produce,” he said. With 15 years of experience, Kang has found it “very, very difficult” to control disease-causing organisms in flume water and said he “didn’t expect this kind of reduction. I’m really happy to see it.”

WSU research technologist Peter Gray agreed, noting that the bacteria were “knocked down below the detection limit almost instantaneously” in the FIT treatments.

Marlene Fritz | EurekAlert!
Further information:
http://www.uidaho.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>