Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy blocker may be potential liver cancer treatment

15.07.2002


A team of Johns Hopkins researchers has identified and successfully tested in animals a potential new treatment for liver cancer, a disease for which there are few effective treatments.

Writing in the July 15 issue of Cancer Research, the scientists report that only cancer cells were killed when the compound, 3-bromopyruvate, was given to rabbits with experimental liver tumors.

"It’s very exciting because we expected the compound to be pretty toxic, but somehow normal cells in the rabbit protect themselves against it," says Peter Pedersen, Ph.D., professor of biological chemistry who has spent two decades studying energy production in cells and how it relates to cancer growth. "We even injected it into a vein so it was distributed throughout the rabbit, and we still didn’t see any apparent toxicity. It’s sort of amazing."

A single injection of the compound directly into the artery that feeds the tumor killed a lot of the cancer cells, but left healthy liver alone. The researchers compared 3-bromopyruvate to a currently used treatment for human liver cancer, called chemoembolization, which delivers a dose of chemotherapy to the tumor and also blocks off the artery that feeds it.

"With 3-bromopyruvate in the rabbits, healthy liver seems to be spared, but sections of healthy liver were damaged by chemoembolization," says first author Jeff Geschwind, M.D., associate professor of radiology and director of interventional radiology. "The difference was quite dramatic."

Pedersen cautions that before 3-bromopyruvate could be tested in humans, scientists would need to learn how normal cells protect themselves, whether the compound causes long-term damage to normal tissues, and how increasing the dose affects the animals.

"We assume some level of the compound would be toxic," adds Pedersen. "Any drug can be toxic, it’s a matter of determining the limits."

Some 16,600 new cases of primary liver cancer are expected this year in the United States, but tumors that spread to the liver from elsewhere (so-called metastatic tumors) frequently hasten death from other, more prevalent types of cancer, such as skin, colon, breast and prostate cancers. If laboratory tests with other cancer cell types are promising, the compound might be useful for treating any tumor in the liver, not just ones originating there, the researchers say.

Two years ago, frustrated because most patients die within six months, Geschwind approached Pedersen with the idea of finding a new way to treat liver cancer. The plan: Identify potential new drugs and use intra-arterial delivery, a procedure with which Geschwind has considerable expertise, to get them directly into the tumor.

The timing was right, because Pedersen had learned enough about the role of energy production in liver cancer over the previous two decades to warrant looking for a possible new drug. Biological chemist Young Ko, Ph.D., now an assistant professor of radiology, tested a dozen or so possible energy-blocking molecules in the lab to find ones that could kill liver cancer cells.

In 2001, the team reported that already-available 3-bromopyruvate was head and shoulders above the rest, in part because it blocks both ways cells make energy (in the form of a molecule called ATP). "3-Bromopyruvate looks like a chemical found in our own body," says Ko, who used 3-bromopyruvate in her graduate work years ago. "It shows a possible drug doesn’t have to be fancy or expensive; this is just as simple and as good as can be."

Building on those laboratory studies, the researchers now have tested the compound’s effects in an animal model of liver cancer. Team member and pathologist Michael Torbenson, M.D., saw damage only to the tumor when he examined the tumor, liver, and other possibly affected organs from the rabbits. The researchers don’t understand how normal cells resist the compound’s effects, but cancer cells’ greater use of glucose to make energy may play a role.

In another experiment, the researchers discovered that small tumors in the lungs, buds from the original tumor in the liver, weren’t affected by arterial delivery of 3-bromopyruvate, but were substantially reduced by intravenous injection.

"It might be logical to treat tumors in the liver by direct intra-arterial injection, and then use an intravenous injection to kill cancer cells that have spread," suggests Pedersen, "but knowing whether this is so is still a long way off."

Joanna Downer | EurekAlert
Further information:
http://cancerres.aacrjournals.org/

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>