Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover paradox about general anesthesia: It can increase post-surgical pain

24.06.2008
The general anesthesia that puts patients into unconscious sleep so they do not feel surgical pain can increase the discomfort they feel once they wake up, say researchers from Georgetown University Medical Center.

They say their findings, the first to scientifically explain what has been anecdotally observed in the clinic, may lead to wider use of the few anesthetics that don't have this side effect, or to the development of new ones.

In the June 23rd issue of the Proceedings of the National Academy of Sciences (PNAS), the scientists report that "noxious" anesthesia drugs - which most of these general anesthetics are - activate and then sensitize specific receptors on neurons in the peripheral nervous system. These are the sensory nerves in the inflammation and pain pathway that are not affected by general anesthesia drugs that target the central nervous system – the brain and the spinal cord.

"The choice of anesthetic appears to be an important determinant of post-operative pain," says the study's lead investigator, Gerard Ahern, Ph.D., an assistant professor in the Department of Pharmacology at Georgetown University Medical Center. "We hope these findings are ultimately helpful in providing more comfort to patients."

It has long been known that general anesthetics cause irritation at the infusion site or in the airways when inhaled, Ahern says. And investigators have also known that while they suppress the central nervous system, they can activate so called "pain-sensing" or nociceptive nerve cells on the peripheral nervous system – in fact, anesthesiologists often first use a drug to suppress inflammation and pain before delivering the anesthesia to put the patient to sleep.

But what has not been understood is the specific mechanism by which anesthetics affect sensory neurons, or that they can continue to cause pain and inflammation even as they are being used during surgery, he says.

The researchers tested the hypothesis that two specific receptor on the nerves cells (TRPV1 and TRPA1) which are often expressed together and which also react to other irritants, such as garlic and wasabi, were the ones activated by the noxious drugs.

"Plants produce chemicals such as capsaicin, mustard and garlic that were meant to stop animals from eating them. When they are eaten, the two main receptors that react to them are TRPV1 and TRPA1," he says. In fact, TRPA1 is more commonly known as the mustard-oil receptor, and is a principal receptor in the pain pathway, Ahern says.

Experiments showed that general anesthetics appear to regulate TRPA1 in a direct fashion, and are thus responsible for the acute noxious effects of the drugs. Perhaps the strongest evidence is that mice bred without TRPA1 genes demonstrate no pain when the drugs are administered and used, Ahern says. "Most general anesthetics activate the mustard oil receptor, and animals that don't have the receptor don't have irritation," he says.

The research team also found that nerve-mediated inflammation was greater when pungent (chemical irritants) versus non-pungent inhaled general anesthetics were used.

What both findings suggest is that sensory nerve stimulation throughout the body just before and during surgery adds to the pain that is felt after the patient is awake, Ahern says. "This is a provocative finding in terms of the clinical setting, because it was not really recognized that use of these drugs results in release of lots of chemicals that recruit immune cells to the nerves, which causes more pain or inflammation."

Some general anesthetics do not activate the mustard-oil receptor, but they may not be as effective in other ways, Ahern says. "This tells us that there is room for improvement in these drugs."

The study was funded by National Institutes of Health and the National Multiple Sclerosis Society. Co-authors include José Matta Ph.D., Paul Cornett Ph.D., Rosa Miyares B.A., Ken Abe, Ph.D., and Niaz Sahibzada, Ph.D., from Georgetown University.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>