Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving understanding of cell behaviour in breast cancer

19.06.2008
The invasion and spread of cancer cells to other parts of the body, known as metastasis, is a principal cause of death in patients diagnosed with breast cancer.

Although patients with early stage, small, breast tumours have an excellent short term prognosis, more than 15 to 20 per cent of them will eventually develop distant metastases, and die from the disease. Vascular invasion — through lymphatic and blood vessels — is the major route for cancer spreading to regional lymph nodes and to the rest of the body.

Dr Stewart Martin, Professor Ian Ellis and their colleagues at The University of Nottingham, and worldwide, are combining a number of approaches in a dynamic effort to improve our understanding of cell behaviour in breast cancer. Discovering how these cells operate is vital in improving diagnosis and treatment for the cancer patient in the longer term, and in identifying therapeutic targets. Already the results of their work have been excellent — with findings in relation to the spread of cancer through the lymphatic vessels prompting a much larger study funded by Cancer Research UK.

A research student within the Nottingham team, Rabab Mohammed, showed recently that specific factors that regulate the growth of blood and lymphatic vessels can identify a subset of tumours which have a high probability of recurring or spreading.

The team subsequently identified the crucial importance of assessing both the level of blood and lymph vessel invasion by cancer cells at the earliest stages of detection. It has, until recently, been very difficult to distinguish between the two. With advances in immunohistochemical techniques, blood vessels can today be reliably identified and differentiated from lymphatics. Currently clinical approaches for the assessment of vascular invasion are insufficiently robust and can result in a failure to detect some lesions accurately, or fail to differentiate adequately between blood and lymph vessels. The Nottingham team has shown — using tumour sections from 177 patients — that 96 per cent of vascular invasion in primary invasive breast cancer is predominantly of the lymph vessels. This is significant.

It is important that this finding is verified in a larger cohort of patients. The researchers are now working to accomplish this, through funding recently obtained from Cancer Research UK, using specimens from more than a thousand women with early stage breast cancer. Results from this study will also allow them to determine whether Lymphatic Vascular Invasion can be incorporated into an improved prognostic index for early stage breast cancer.

This work is being combined with gene expression studies, with bioinformatic approaches and using in vitro (cells in culture) models to identify novel therapeutic targets. It is being conducted in collaboration with a number of groups, industrial and academic, from both the UK and overseas.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>