Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving understanding of cell behaviour in breast cancer

19.06.2008
The invasion and spread of cancer cells to other parts of the body, known as metastasis, is a principal cause of death in patients diagnosed with breast cancer.

Although patients with early stage, small, breast tumours have an excellent short term prognosis, more than 15 to 20 per cent of them will eventually develop distant metastases, and die from the disease. Vascular invasion — through lymphatic and blood vessels — is the major route for cancer spreading to regional lymph nodes and to the rest of the body.

Dr Stewart Martin, Professor Ian Ellis and their colleagues at The University of Nottingham, and worldwide, are combining a number of approaches in a dynamic effort to improve our understanding of cell behaviour in breast cancer. Discovering how these cells operate is vital in improving diagnosis and treatment for the cancer patient in the longer term, and in identifying therapeutic targets. Already the results of their work have been excellent — with findings in relation to the spread of cancer through the lymphatic vessels prompting a much larger study funded by Cancer Research UK.

A research student within the Nottingham team, Rabab Mohammed, showed recently that specific factors that regulate the growth of blood and lymphatic vessels can identify a subset of tumours which have a high probability of recurring or spreading.

The team subsequently identified the crucial importance of assessing both the level of blood and lymph vessel invasion by cancer cells at the earliest stages of detection. It has, until recently, been very difficult to distinguish between the two. With advances in immunohistochemical techniques, blood vessels can today be reliably identified and differentiated from lymphatics. Currently clinical approaches for the assessment of vascular invasion are insufficiently robust and can result in a failure to detect some lesions accurately, or fail to differentiate adequately between blood and lymph vessels. The Nottingham team has shown — using tumour sections from 177 patients — that 96 per cent of vascular invasion in primary invasive breast cancer is predominantly of the lymph vessels. This is significant.

It is important that this finding is verified in a larger cohort of patients. The researchers are now working to accomplish this, through funding recently obtained from Cancer Research UK, using specimens from more than a thousand women with early stage breast cancer. Results from this study will also allow them to determine whether Lymphatic Vascular Invasion can be incorporated into an improved prognostic index for early stage breast cancer.

This work is being combined with gene expression studies, with bioinformatic approaches and using in vitro (cells in culture) models to identify novel therapeutic targets. It is being conducted in collaboration with a number of groups, industrial and academic, from both the UK and overseas.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>