Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuroscientists Uncover Possible Link Between Different Forms of Epilepsy

18.06.2008
Carnegie Mellon University neuroscientists have identified what may be the first known common denominator underlying inherited and sporadic epilepsy - a disruption in an ion channel called the BK channel.

Although BK channels have been linked to a rare, familial form of epilepsy, their involvement in other types of seizure disorders has never been demonstrated. These findings, published in the June issue of Neurobiology of Disease, indicate that BK channels are a new target for anticonvulsant therapies, and offer new hope to individuals suffering from epilepsy.

The researchers discovered that BK channels become abnormally active after a seizure. This disruption results in the neurons becoming overly excitable, which may be associated with the development of epilepsy. The Carnegie Mellon scientists were able to reverse this abnormal excitability using a BK channel antagonist, which returned the post-seizure electrical activity to normal levels.

"The fact that the BK channel previously has been linked with familial epilepsy and with generalized seizures in subjects without a genetic predisposition points to a common therapeutic pathway. We've shown that BK antagonists can be very effective in normalizing aberrant electrical activity in neurons, which suggests that BK channel antagonists might be a new weapon in the arsenal against epilepsy," said Alison Barth, an assistant professor of biological sciences at Carnegie Mellon's Mellon College of Science.

Epilepsy is a neurological disorder marked by abnormal electrical activity in the brain that leads to recurring seizures. According to the Epilepsy Foundation, no cause can be found in about seven out of 10 people with epilepsy. Researchers, however, have identified a genetic component in some types of epilepsy. This study establishes, for the first time, a shared component between different types of epilepsy.

"Although research has revealed that many types of inherited epilepsy are linked to mutations in different ion channels, there has been little overlap between these ion channels and those channels that are affected by sporadic or acquired forms of epilepsy," Barth said. "BK channels could represent a common pathway activated in familial and sporadic cases of epilepsy."

The BK channel allows electrically charged potassium ions into and out of cells. This activity starts and stops the electrical impulses by which neurons communicate with one another. Barth and her colleagues were specifically interested in investigating BK channels' function following a first seizure. Their in vitro studies revealed that, after a seizure, BK channel function was enhanced - neurons fired quicker, stronger and more spontaneously. This abnormal activity might underlie the transition between a single seizure and the emergence of epilepsy, characterized by recurrent seizures.

"We found that seizures caused cells to become more excitable, and that BK channel antagonists bring everything back to normal. These channels are at a nexus of control and represent a new target for anticonvulsant therapies," Barth said.

It is also possible that BK channel antagonists could be used early, perhaps after an initial seizure, to prevent cellular changes that lead to epilepsy, according to Barth.

Co-authors of the study include Sonal Shruti and Roger L. Clem, graduate students in the Department of Biological Sciences and the Center for the Neural Basis of Cognition at Carnegie Mellon. The study was funded by the Sloan Foundation, the Milken Family Foundation, the National Institutes of Health and Carnegie Mellon University.

Jocelyn Duffy | EurekAlert!
Further information:
http://www.andrew.cmu.edu

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>