Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel compound may treat acute diarrhea

18.06.2008
Debilitating illness is major cause of child deaths in developing nations

In a development that may lessen the epidemic of diarrhea-related deaths among children in developing countries, scientists in the laboratory of Nobel Laureate Ferid Murad, M.D., Ph.D., at The University of Texas Health Science Center at Houston have discovered a novel compound that might lead to an inexpensive, easy-to-take treatment. The results of pre-clinical tests appear in the June 16 online edition of the journal Proceedings of the National Academy of Sciences of the United States of America.

The compound - a pyridopyrimidine derivative - targets acute secretory diarrhea caused by E. coli and other enterotoxigenic strains of bacteria, which produce toxins that stimulate the linings of the intestines, causing them to secrete excessive fluid, thereby producing diarrhea.

Diarrhea kills an estimated 1.6 to 2.5 million children every year, according to researchers quoted in the Bulletin of the World Health Organization. Enterotoxigenic strains of bacteria may account for a significant amount of these deaths, according to an article in Clinical Microbiology Reviews. Enterotoxigenic E. coli or ETEC is a leading cause of bacterial diarrhea.

During pre-clinical tests, the compound was associated with a significant reduction in intestinal fluid secretion in an animal model of bacterial diarrhea. It was also linked to reduced fluid build up during laboratory tests on human colon cells. It caused significant decrease in fluid secretion without apparent toxicity.

This unique approach to the treatment of enterotoxigenic diarrhea works by interrupting the diarrhea-causing chain of events that occur when bacterial toxins enter the intestinal tract. The compound slows the transmission of information in the epithelial cells lining the intestines. Consequently, the molecular mediators regulating the secretion of salt and fluid in the gut do not get fully activated. ETEC comes from feces-contaminated food or water and also causes travelers' diarrhea.

"This newly discovered compound decreases the formation of ever-present cellular messenger molecules, cyclic guanosine monophosphate and cyclic adenosine monophosphate, caused by various bacterial toxins and might prevent or attenuate the intestinal fluid secretion, diarrhea and dehydration," said Murad, the senior author. "While this research looks extremely promising as a preventive or therapeutic intervention in Third World diarrheal disease and travelers' diarrhea, much work remains to be done to move into clinical trials and eventual therapeutic approval."

In the event of an earthquake, typhoon or other catastrophe, this potential diarrhea treatment could be used to treat outbreaks of enterotoxigenic E. coli caused by contaminated food and water supplies, Murad said. The compound can be placed in a pill for adults and in a liquid for children.

Secretory diarrhea describes the condition when the small intestine, which is normally an absorptive organ, is stimulated to secrete salts and water into the intestinal lumen, often in massive quantities. The resulting diarrhea can lead to profound fluid loss, dehydration, shock and death.

There are many causes of secretory diarrhea. The most common, by far, is infestation of the small intestine by certain bacteria, such as cholera or certain strains of E. coli, following ingestion of contaminated water or food. These bacteria multiply in the intestinal tract and produce toxins that bring about elevations of a group of intracellular messengers, cyclic nucleotides, that stimulate intestinal cells to secrete salt and water.

To date, there is no effective way of treating these diarrheas directly. Treatment is indirect and aimed at preventing serious outcomes by minimizing fluid loss using intravenous or, more recently, oral rehydration.

"Dr. Murad and his coworkers have discovered a relatively simple compound that indirectly inhibits the ability of several bacterial toxins to elevate intracellular levels of cyclic nucleotides, and inhibits fluid secretion by animal small intestine exposed to these toxins," said Stanley G. Schultz, M.D., professor, associate dean for Institutional Advancement and Fondren Chair in Cellular Signaling at The University of Texas Medical School at Houston.

"These findings are a promising lead into what could prove to be a triumph of translational research of staggering importance," Schultz said. "An inexpensive drug that could block the intestinal secretory pathway, with minimal side effects, would be a "magic bullet" that would not only save millions of lives in many parts of the developing world, but would also save the billions of dollars that are lost annually because of diarrhea throughout the world. It would truly be a treatment of diarrhea rather than a treatment of the consequences of diarrhea." Schultz received the 2006 Prince Mahidol Award for Medicine for pioneering research that led to the development of oral rehydration therapy.

Herbert L. DuPont, M.D., professor of infectious diseases and director of the Center For Infectious Diseases at The University of Texas School of Public Health, said, "The approach being taken here is to decrease fluid loss from the intestine, which is directed to the most important body mechanism leading to acute diarrhea."

"Current antidiarrheal therapy is less physiologic, often working through inhibition of intestinal movement leading to potential complications. A drug that stops the loss of fluid and salt from the intestine could save infant lives in developing regions and alleviate suffering that would otherwise be experienced by travelers to the tropics and subtropics," DuPont said.

Travelers' diarrhea affects millions of people annually.

The promising treatment is the result of a 30-year investigation by Murad and long-time colleague Richard L. Guerrant, M.D., director of the Center for Global Health at the University of Virginia School of Medicine, Charlottesville, into the molecular mechanisms of ETEC, which began with the identification of a link between the messenger molecules and a bacterial strain of diarrhea pathogen from Bangladesh.

Murad credits advances in biochemistry with their discovery. "I always thought we would find a compound. We now have the right set of people and right circumstances to solve this. We found this compound while screening a library of chemical substances," Murad said.

This area of molecular medicine is called cell signaling.

"You start with one molecule of a toxin or a hormone," said Alexander Kots, Ph.D., the lead author and an instructor at the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), a part of the UT Health Science Center at Houston. "The toxin binds to a target and influences it. Soon you have 10 molecules, then 100, then 1,000 and so forth. This is called signal amplification. One molecule of toxin can produce millions of molecules of water."

Their strategy is to stop the signal amplification process early on, thereby halting enterotoxigenic diarrhea, said co-author Byung-Kwon Choi, Ph.D., a research fellow at the IMM.

"Various bacterial toxins are responsible for increasing the production of intracellular messenger molecules. These molecules contribute to the increase in fluid secretion. We discovered a compound that blocks one of the pathways responsible for ETEC diarrhea. This has never been done before," Murad said.

Besides diarrheal disease, this potential drug, based on its mechanism of action, could have promising effects in other diseases such as inflammatory bowel disease and some endocrine disorders, Murad said.

"The relatively easy chemical synthesis (single step) and a presumed low cost should make it very attractive for therapy of diarrhea in developing countries," Murad wrote in the paper.

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>